Current-Carrying Mechanism of New Continuous Cable Traction Power Supply System
-
摘要: 新型电缆贯通供电系统能够取消电分相环节,延长供电距离,并有效治理电气化铁路中的电能质量问题. 但电缆牵引网(cable traction network, CTN)包含不同的电压等级,基波电流要首先经过牵引网的各个环节,最终汇聚到列车负载;而列车发射的谐波电流要经过两级渗透,最终返送到公用电网. 为研究电缆贯通供电系统的载流机制,针对CTN的特殊拓扑结构,根据双口网络分析方法,建立了车网耦合系统等值电路;分析了CTN中的电流传输规律;利用仿真模型,研究了CTN中的谐波电流分布与中心变电所(main substation, MSS)的谐波电流含量. 研究结果表明:当系统内有8个短回路时,单车工况下,基波电流主要在列车所在的单侧供电区间传输;机车电流与MSS电流之比小于4 (牵引变压器变比);MSS谐波电流含量较列车处最多降低了43.5%.Abstract: Continuous cable traction power supply system is free of electrical phase separation and extend power supply distance, dealing with power quality problems effectively. However, cable traction network (CTN) contains different voltage levels, and the fundamental frequency current flows every CTN link before being used by trains. Moreover, the harmonic current transmitted from trains needs to penetrate in two voltage levels before feeding back to utility grid. In order to study current-carrying mechanism in novel continuous cable TPSS, starting from the special topology of CTN, the equivalent circuit of train-CTN coupling system is established according to dual-port network analysis method. Then current transmission rules in CTN are analyzed. Combined with simulation model, the harmonic current distribution in CTN and harmonic current content of main substation (MSS) are studied. When the new system contains eight short sections for one train, the fundamental frequency current is mainly transmitted by the single-sided CTN where the train locates, and the current ratio between load and MSS is less than four (traction transformer ratio). The harmonic current content of MSS decreases by 43.5% compared with harmonic current content at train.
-
表 1 各端口电压计算对比
Table 1. Port voltage calculation comparison
kV 方法 U1out U2in U5in U3out U5out UL 理论 111.20 111.20 111.20 27.36 27.43 25.89 仿真 111.28 111.28 111.28 27.42 27.48 26.33 误差/% −0.07 −0.07 −0.07 −0.22 −0.18 −1.67 表 2 各端口电流计算对比
Table 2. Port current calculation comparison
A 方法 IC IC1 IT1 It1 It2 IL 理论 209.55 158.19 92.03 368.14 420.15 788.26 仿真 210.99 159.82 91.61 366.40 408.80 775.08 误差/% −0.68 −1.02 0.46 0.47 2.77 1.70 表 3 各个短回路牵引电缆参数
Table 3. Parameters of every short section cable
参数 D1 D2 D3 D4 D5 D6 D7 D8 截面积/mm2 400 400 500 630 630 500 400 400 长度/km 29.0 28.4 28.8 29.4 29.2 28.0 29.0 27.4 表 4 MSS输出电流
Table 4. Output current in MSS
列车位置 PL/MW IMSS/A IL/A kb 空载 0.70 D5 20.000 192.90 765.20 3.968 D6 20.000 194.70 768.10 3.937 D7 20.000 197.10 775.90 3.937 D8 20.000 200.10 784.90 3.922 表 5 再生工况时的MSS输出功率
Table 5. MSS output power in regeneration condition
列车位置 PMSS /MW QMSS /Mvar MSS输出电压/kV 空载 0.060 0.050 110.00 D8 −9.860 −2.090 110.32 D7 −9.850 −2.070 110.32 D6 −9.860 −2.080 110.32 D5 −9.880 −2.060 110.32 表 6 多车时MSS输出功率
Table 6. MSS output power with multi-train work
制动列车位置 PMSS/MW Pbra/MW PL/MW 再生能量利用率/% 无制动 20.480 10.000 20.000 D6 11.580 10.000 20.000 89 D5 11.780 10.000 20.000 87 D4 12.180 10.000 20.000 83 D3 12.480 10.000 20.000 80 -
李群湛, 贺建闽. 牵引供电系统分析[M]. 成都: 西南交通大学出版社, 2007: 129-138. 周胜军,于坤山,冯满盈,等. 电气化铁路供电电能质量测试主要结果分析[J]. 电网技术,2009,33(13): 54-57,63.ZHOU Shengjun, YU Kunshan, FENG Manying, et al. Analysis on main results of power quality test of power supply for electrified railway[J]. Power System Technology, 2009, 33(13): 54-57,63. 李群湛. 论新一代牵引供电系统及其关键技术[J]. 西南交通大学学报,2014,49(4): 559-568.LI Qunzhan. On new generation traction power supply system and its key technologies for electrification railway[J]. Journal of Southwest Jiaotong University, 2014, 49(4): 559-568. 李群湛. 论干线铁路与城市轨道统一牵引供电方式[J]. 中国科学:技术科学,2018,48(11): 1179-1189. doi: 10.1360/N092017-00184LI Qunzhan. Unified traction power supply mode for trunk railway and urban rail transit[J]. Scientia Sinica Technologica, 2018, 48(11): 1179-1189. doi: 10.1360/N092017-00184 郭鑫鑫,李群湛,解绍锋,等. 电气化铁路高压CTN电气特性研究[J]. 电力自动化设备,2015,35(12): 132-137.GUO Xinxin, LI Qunzhan, XIE Shaofeng, et al. Electrical characteristic of cable traction network for electrified railway[J]. Electric Power Automation Equipment, 2015, 35(12): 132-137. 周婷,解绍锋. 电气化铁路新型电缆供电方案[J]. 电力自动化设备,2018,38(7): 189-195,206.ZHOU Ting, XIE Shaofeng. New-type cable traction power supply scheme of electric railroad[J]. Electric Power Automation Equipment, 2018, 38(7): 189-195,206. 张丽艳,李群湛,易东,等. 同相供电系统潮流控制器容量的优化配置[J]. 电力系统自动化,2013,37(8): 59-64.ZHANG Liyan, LI Qunzhan, YI Dong, et al. Capacity optimization of power flow controller used in a co-phase traction poer supply system[J]. Automation of Electric Power Systems, 2013, 37(8): 59-64. CHEN Minwu, LI Qunzhan, ROBERTS C, et al. Modelling and performance analysis of advanced combined co-phase traction power supply system in electrified railway[J]. IET Generation Transmission & Distribution, 2016, 10(4): 906-916. doi: 10.1049/iet-gtd.2015.0513 李群湛. 我国高速铁路牵引供电发展的若干关键技术问题[J]. 铁道学报,2010,32(4): 119-124.LI Qunzhan. On some technical key problems in the development of traction power supply system for high-speed railway in China[J]. Journal of the China Railway Society, 2010, 32(4): 119-124. 于永源, 杨绮雯. 电力系统分析[M]. 北京: 中国电力出版社, 2007: 19-20, 69. 谭永霞. 电路分析[M]. 成都: 西南交通大学出版社, 2004: 244-250. 陈宏伟,耿光超,江全元. 电气化铁路牵引供电系统车网耦合的潮流计算方法[J]. 电力系统自动化,2012,36(3): 76-80,110.CHEN Hongwei, GENG Guangchao, JIANG Quanyuan. Power flow algorithm for traction power supply system of electric railway based on locomotive and network coupling[J]. Automation of Electric Power Systems, 2012, 36(3): 76-80,110. 解绍锋,李群湛. 高速列车再生制动对负序影响研究[J]. 铁道学报,2011,33(7): 14-18.XIE Shaofeng, LI Qunzhan. Study on impact of high-speed train regenerative braking on negative sequence[J]. Journal of the China Railway Society, 2011, 33(7): 14-18. 何正友,胡海涛,方雷,等. 高速铁路牵引供电系统谐波及其传输特性研究[J]. 中国电机工程学报,2011,31(16): 55-62.HE Zhengyou, HU Haitao, FANG Lei, et al. Research on the harmonic in high-speed railway traction power supply system and its transmission characteristic[J]. Processings of the CSEE, 2011, 31(16): 55-62. 高仕斌, 胡海涛. 高速铁路车网电气耦合理论[M]. 北京: 科学出版社, 2016: 97-100. 国家技术监督局. 电能质量 公用电网谐波: GB/T 14549—93[S]. 北京: 中国标准出版社, 1993.