Citation: | GONG Lei, HE Pai, SHI Yong, ZHU Changsheng. Non-Singular Fast Terminal Sliding Mode Rotor Position Control of Active Magnetic Bearings[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 976-985. doi: 10.3969/j.issn.0258-2724.20240090 |
In order to solve problems of slow system response speed and poor anti-interference ability in the position control of the rotor of active magnetic bearings (AMB), a position control method combining the non-singular fast terminal sliding function with the improved super-twisting reaching law was proposed to obtain fast and accurate control effects of dynamic responses. In addition, due to internal and external interference in the system, constant switching gain was added to the sliding mode reaching law, so as to ensure the robustness of the system, but it could exacerbate the system chattering. Therefore, the interference was observed and compensated by a nonlinear extended state observer, which alleviated the contradiction between chattering and anti-interference. Then, the stability of the proposed method was proven Lyapunov stability theory, and the proposed control method was verified by simulation and experiment. The results show that compared with the traditional sliding mode controller, the designed controller has faster response speed and stronger chattering suppression ability, and the time for the rotor to reach the target position is shortened by 56.4%. The dynamic performance of the system is improved, and the average control current is reduced by 68.5%. The chattering suppression ability of the system is enhanced, indicating that the proposed algorithm has strong robustness.
[1] |
ZHENG S Q, WANG C. Rotor balancing for magnetically levitated TMPs integrated with vibration self-sensing of magnetic bearings[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(6): 3031-3039. doi: 10.1109/TMECH.2021.3051372
|
[2] |
WANG K, MA X, LIU Q, et al. Multiphysics global design and experiment of the electric machine with a flexible rotor supported by active magnetic bearing[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(2): 820-831. doi: 10.1109/TMECH.2019.2892392
|
[3] |
HUTTERER M, WIMMER D, SCHRÖDL M. Stabilization of a magnetically levitated rotor in the case of a defective radial actuator[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(6): 2599-2609. doi: 10.1109/TMECH.2020.2985623
|
[4] |
DU L, CUI P L, ZHOU X X, et al. Unbalance vibration control for MSCMG based on high-precision synchronous signal detection method[J]. IEEE Sensors Journal, 2021, 21(16): 17917-17925. doi: 10.1109/JSEN.2021.3082695
|
[5] |
刘贺. 主动磁悬浮轴承的H∞控制研究[D]. 大连:大连理工大学,2021.
|
[6] |
ZHANG X Y, CHEN X K, ZHU G Q, et al. Output feedback adaptive motion control and its experimental verification for time-delay nonlinear systems with asymmetric hysteresis[J]. IEEE Transactions on Industrial Electronics, 2020, 67(8): 6824-6834. doi: 10.1109/TIE.2019.2938460
|
[7] |
王忠博,毛川,祝长生. 主动电磁轴承-刚性转子系统PID控制器设计方法[J]. 中国电机工程学报,2018,38(20): 6154-6163.
WANG Zhongbo, MAO Chuan, ZHU Changsheng. A design method of PID controller for active magnetic bearings-rigid rotor systems[J]. Proceedings of the CSEE, 2018, 38(20): 6154-6163.
|
[8] |
周天豪,杨智,祝长生,等. 电磁轴承高速电机转子系统的内模-PID控制[J]. 电工技术学报,2020,35(16): 3414-3425.
ZHOU Tianhao, YANG Zhi, ZHU Changsheng, et al. Internal model control-PID control of an active magnetic bearing high-speed motor rotor system[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3414-3425.
|
[9] |
MU C X, HE H B. Dynamic behavior of terminal sliding mode control[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3480-3490. doi: 10.1109/TIE.2017.2764842
|
[10] |
任萍,朱景伟,赵燕,等. 基于双滑模控制器的开关磁阻电机调速策略[J]. 中国电机工程学报,2024,44(11): 4501-4513.
REN Ping, ZHU Jingwei, ZHAO Yan, et al. Speed control strategy for switched reluctance motor based on dual sliding mode controller[J]. Proceedings of the CSEE, 2024, 44(11): 4501-4513.
|
[11] |
HOU H Z, YU X H, XU L, et al. Finite-time continuous terminal sliding mode control of servo motor systems[J]. IEEE Transactions on Industrial Electronics, 2020, 67(7): 5647-5656. doi: 10.1109/TIE.2019.2931517
|
[12] |
XU D Z, DING B, JIANG B, et al. Nonsingular fast terminal sliding mode control for permanent magnet linear synchronous motor via high-order super-twisting observer[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(3): 1651-1659. doi: 10.1109/TMECH.2021.3086527
|
[13] |
李冰林,曾励,张鹏铭,等. 主动磁悬浮轴承的滑模自抗扰解耦控制[J]. 电机与控制学报,2021,25(7): 129-138.
LI Binglin, ZENG Li, ZHANG Pengming, et al. Sliding mode active disturbance rejection decoupling control for active magnetic bearings[J]. Electric Machines and Control, 2021, 25(7): 129-138.
|
[14] |
靖永志,冯伟,王森,等. 基于自适应非奇异终端滑模的悬浮控制策略[J]. 西南交通大学学报,2022,57(3): 566-573. doi: 10.3969/j.issn.0258-2724.20210743
JING Yongzhi, FENG Wei, WANG Sen, et al. Levitation control strategy based on adaptive non-singular terminal sliding mode[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 566-573. doi: 10.3969/j.issn.0258-2724.20210743
|
[15] |
WANG J X, RONG J Y, YANG J. Adaptive fixed-time position precision control for magnetic levitation systems[J]. IEEE Transactions on Automation Science and Engineering, 2023, 20(1): 458-469. doi: 10.1109/TASE.2022.3156943
|
[16] |
赵静,林智昌,姜斌,等. 永磁同步直线电机的分数阶超螺旋滑模控制[J]. 控制理论与应用,2023,40(7): 1224-1232. doi: 10.7641/CTA.2022.20162
ZHAO Jing, LIN Zhichang, JIANG Bin, et al. Fractional order super-twisting sliding mode control of permanent magnet synchronous linear motor[J]. Control Theory & Applications, 2023, 40(7): 1224-1232. doi: 10.7641/CTA.2022.20162
|
[17] |
KALI Y, AYALA M, RODAS J, et al. Time delay estimation based discrete-time super-twisting current control for a six-phase induction motor[J]. IEEE Transactions on Power Electronics, 2020, 35(11): 12570-12580. doi: 10.1109/TPEL.2020.2995773
|
[18] |
WANG J X, ZHAO L, YU L. Adaptive terminal sliding mode control for magnetic levitation systems with enhanced disturbance compensation[J]. IEEE Transactions on Industrial Electronics, 2021, 68(1): 756-766. doi: 10.1109/TIE.2020.2975487
|
[19] |
东野亚兰,杨淑英,王奇帅,等. 基于增强型扩张状态观测器的永磁同步电机低抖振高抗扰二阶终端滑模电流控制[J]. 电工技术学报,2024,39(8): 2434-2448.
DONGYE Yalan, YANG Shuying, WANG Qishuai, et al. Enhanced extended state observer based second order terminal sliding mode current control for permanent magnet synchronous machine with low chattering and improved disturbance rejection[J]. Transactions of China Electrotechnical Society, 2024, 39(8): 2434-2448.
|
[20] |
朱良红,张国强,李宇欣,等. 基于级联扩张观测器的永磁电机无传感器自抗扰控制策略[J]. 电工技术学报,2022,37(18): 4614-4624.
ZHU Lianghong, ZHANG Guoqiang, LI Yuxin, et al. Active disturbance rejection control for position sensorless permanent magnet synchronous motor drives based on cascade extended state observer[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4614-4624.
|
[21] |
XU W, DIAN R J, LIU Y, et al. Robust flux estimation method for linear induction motors based on improved extended state observers[J]. IEEE Transactions on Power Electronics, 2019, 34(5): 4628-4640. doi: 10.1109/TPEL.2018.2865800
|
[22] |
ZHANG T R, XU Z, GERADA C. A nonlinear extended state observer for sensorless IPMSM drives with optimized gains[J]. IEEE Transactions on Industry Applications, 2020, 56(2): 1485-1494. doi: 10.1109/TIA.2019.2959537
|
[1] | LIU Xin, YUAN Pengyu. Modeling and Simulation of a Novel Heteropolar Radial Hybrid Magnetic Bearing[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 944-953. doi: 10.3969/j.issn.0258-2724.20230315 |
[2] | WANG Tao, HUANG Jingchun, ZHOU Xingzhi, JIN Jing. Sensorless Control of Permanent Magnet Synchronous Motor Based on Improved Super-Twisting Sliding Mode Observer[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 445-453. doi: 10.3969/j.issn.0258-2724.20220793 |
[3] | LI Zikang, DAI Chunhui, HUANG Cuicui, LONG Zhiqiang. Active Disturbance Rejection Speed Control for Maglev Trains Based on Multiple Population Genetic Algorithm[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 912-920. doi: 10.3969/j.issn.0258-2724.20240113 |
[4] | BI Jingguo, KE Zhihao, YANG Yiying, LI Zhengyan, DENG Zigang. Lateral Control of Permanent Magnet Electrodynamic Suspension Vehicle Based on Improved Nonlinear Model Predictive Controller[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 851-864. doi: 10.3969/j.issn.0258-2724.20240494 |
[5] | SUN Yougang, ZHANG Dandan, JI Wen, XU Junqi. Fuzzy Compensation-Based Non-Singular Terminal Sliding Mode Control of Maglev Vehicle Levitation System[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 803-811. doi: 10.3969/j.issn.0258-2724.20240499 |
[6] | XU Xianze, SONG Mingxing, GONG Yongxing, XU Fengqiu, WANG Dijin, SUI Bowen, GUO Qingquan. Fractional-Order Sliding Mode Control for Maglev Rotary Table Based on Disturbance Compensation[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 766-775. doi: 10.3969/j.issn.0258-2724.20230412 |
[7] | FENG Fu, HU Hailin, ZHONG Deming, YANG Jie. Online Parameter Identification of Linear Induction Motors Based on Improved Interconnected Full-Order Observer[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 776-785. doi: 10.3969/j.issn.0258-2724.20230507 |
[8] | JIN Junjie, WANG Yanfeng, XU Chengcheng, LU Wenxuan, ZHANG Xiaoyou, SUN Feng, XU Fangchao. Design and Magnetic Force Characteristic Analysis of Magnetic Levitation Bearing for Artificial Kidney Pumps[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 795-803. doi: 10.3969/j.issn.0258-2724.20230090 |
[9] | ZHOU Yang, ZHOU Jin, WANG Yiyu, ZHANG Yue, XU Yuanping. Modeling and Robust Control of Magnetic Bearing-Rotor System Considering Interface Contact[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 755-765. doi: 10.3969/j.issn.0258-2724.20230510 |
[10] | WEI Jingbo, LUO Hao, GUAN Zijin. Global Fast Terminal Sliding Mode Control for Maglev Ball System Based on Disturbance Observer[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 836-844. doi: 10.3969/j.issn.0258-2724.20210941 |
[11] | JIN Chaowu, CAO Yingqing, ZHOU Jin, YE Zhoucheng, XIN Yu. Anti-Disturbance Performance of Maglev Rotor Using Model Assisted Extended State Observer[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220803 |
[12] | ZHOU Yang, ZHOU Jin, ZHANG Yue, XU Yuanping. Optimum Structural Design of Active Magnetic Bearing Based on RBF Approximation Model[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 682-692. doi: 10.3969/j.issn.0258-2724.20210766 |
[13] | HE Yanhui, GAN Yangjunjie, ZHOU Liang. Application of Active Magnetic Bearing in Waste Heat Generator[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 657-664. doi: 10.3969/j.issn.0258-2724.20210860 |
[14] | JING Yongzhi, FENG Wei, WANG Sen, MA Xianchao, HAO Jianhua, DONG Jinwen. Levitation Control Strategy Based on Adaptive Non-singular Terminal Sliding Mode[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 566-573. doi: 10.3969/j.issn.0258-2724.20210743 |
[15] | JIANG Qilong, HU Zhenqiu. Improved Incomplete Derivative PID Control of Axial Active Magnetic Bearing[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 241-246. doi: 10.3969/j.issn.0258-2724.2015.02.006 |
[16] | WU Haikang, ZHONG Zaimin, YU Zhuoping. A Novel Clutch Actuator Control Algorithm Based on Lipschitz Observer[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 270-278. doi: 10.3969/j.issn.0258-2724.2015.02.010 |
[17] | JIANG Lin, 2, XIAO Jian, WANG Tao. Takagi-Sugeno Fuzzy State Observer for Induction Motor[J]. Journal of Southwest Jiaotong University, 2010, 23(2): 273-277. doi: 10. 3969/ j. issn. 0258-2724. |
[18] | DONG Xiaomin, YU Miao, LIAO Changrong, CHEN Weimin. Adaptive Semiactive Bumper for Aircraft[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 748-752. |
[19] | WANG Cuihong, HUANG Tianmin, BAO Xiaoying. Design of Variable Structure Control for Mismatched Uncertain Singular Systems[J]. Journal of Southwest Jiaotong University, 2007, 20(6): 675-679. |
[20] | WANGJue, LI Zhi. A Fault Diagnosis of Dynamic Systems Based on Unknown Input Observer Schemes[J]. Journal of Southwest Jiaotong University, 2001, 14(3): 281-285. |