Citation: | HE Yanhui, GAN Yangjunjie, ZHOU Liang. Application of Active Magnetic Bearing in Waste Heat Generator[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 657-664. doi: 10.3969/j.issn.0258-2724.20210860 |
Aiming at the problems of low efficiency, high cost and large volume of the traditional waste heat power generation equipment, a waste heat generator equipped with the 5-DOF (5-degree of freedom) active magnetic bearing for Organic Rankine waste heat generation system was designed. Firstly, based on the rotor diameter limit and maximum bearing capacity requirements, the structural forms of radial and axial magnetic bearings were determined. Furthermore, the dimensions and performance parameters of magnetic bearings were calculated and checked by one-dimensional magnetic circuit model and two-dimensional finite element analysis. Secondly, in order to ensure the stability margin of the magnetic bearing, a three-level PWM (pulse-width modulation) power amplifier was used to reduce the output current ripple, and an incomplete differential PID controller incorporated with unbalance compensation were used to realize the 5-DOF stable suspension. Finally, the waste heat generator equipped with magnetic bearing was applied to the actual customer site. The reliability of the waste heat generator was verified from three dimensions of stability margin, bearing capacity and shaft peak-to-peak value. The field test results show that the waste heat generator system has operated stably and reliably in all operation conditions, and can achieve full-power generation and long-term operation. The sensitivity function of the magnetic bearing system is less than 12 dB, and the peak-to-peak vibration value of the rotor of the waste heat generator is less than 53 μm, which meet the long-term stable operation requirements of ISO14839. The maximum axial bearing capacity reaches 3 600 N, which meets the requirements of actual working conditions.
[1] |
孟祥睿, 马新灵. 有机朗肯循环低品位热能发电技术[M]. 郑州: 河南科技出版社, 2015.
|
[2] |
纪历. 低温余热磁悬浮发电机转子轴系振动机理研究[J]. 电机与控制学报,2019,23(11): 67-75.
JI Li. Vibration mechanism analysis of magnetic levitation rotor system for low temperature waste heat power generation[J]. Electric Machines and Control, 2019, 23(11): 67-75.
|
[3] |
孙立佳,任小坤,高元景,等. 高速透平发电机的特点及相关技术研究[J]. 低温与超导,2015,43(8): 23-26.
SUN Lijia, REN Xiaokun, GAO Yuanjing, ea al. Study on feature and related technology of high speed turbine generator[J]. Cryogenics & Superconductivity, 2015, 43(8): 23-26.
|
[4] |
梁欣. 余热发电高速永磁电机设计与分析[D]. 武汉: 华中科技大学, 2019.
|
[5] |
戴其城. 涡轮直驱余热发电机组中锥形永磁同步电机的研究[D]. 长沙: 湖南大学, 2018.
|
[6] |
胡业发, 周祖德, 江征风. 磁力轴承的基础理论与应用[M]. 北京: 机械工业出版社, 2006.
|
[7] |
王大彪,段 捷,胡哺松,等. 有机朗肯循环发电技术发展现状[J]. 节能技术,2015,33(191): 235-242.
WANG Dabiao, DUAN Jie, HU Bu song, et al. Status of organic Rankine cycle power generation technology[J]. Energy Conservation Technology, 2015, 33(191): 235-242.
|
[8] |
占智军,祝长生. E型径向电磁轴承的参数设计及特性分析[J]. 机电工程,2013,30(3): 267-272.
ZHAN Zhijun, ZHU Changsheng. Parameters design and characteristics analysis of E-core radial magnetic bearings[J]. Journal of Mechanical & Electrical Engineering, 2013, 30(3): 267-272.
|
[9] |
杨贝,张宁,张海波,等. 径向磁悬浮轴承的结构设计和数值模拟[J]. 低温与超导,2015,43(4): 31-35,42.
YANG Bei, ZHANG Ning, ZHANG Haibo, et al. Design and simulation of radial active magnetic bearings[J]. Cryogenics & Superconductivity, 2015, 43(4): 31-35,42.
|
[10] |
代燕杰. 磁悬浮推力轴承的电磁性能分析及结构设计[D]. 济南: 山东大学, 2008.
|
[11] |
吴宝贵. 轴向磁悬浮轴承的研究[D]. 南京: 南京航空航天大学, 2008.
|
[12] |
邹望蠡. 轴向磁轴承的拓扑结构及参数优化设计[D]. 南京: 南京航空航天大学, 2014.
|
[13] |
刘程子. 适用于高速电机的混合型磁悬浮轴承设计及控制策略的研究[D]. 南京: 南京航空航天大学, 2014.
|
[14] |
魏坚. 磁悬浮飞轮电池支承控制系统的硬件设计与算法研究[D]. 武汉: 武汉理工大学, 2010.
|
[15] |
刘建明. 电磁轴承结构设计与转子动力学分析[D]. 合肥: 合肥工业大学, 2007.
|
[16] |
李冰. 电磁轴承系统集成化技术的研究[D]. 南京: 南京航空航天大学, 2003.
|
[17] |
郑坚强. 电磁轴承有限元分析结构设计及控制[D]. 杭州: 浙江大学, 2004.
|
[18] |
周传月,JOACHIM S. 基于Madyn_2000的磁悬浮轴承控制器的设计[J]. 风机技术,2017,59(4): 51-59,78.
ZHOU Chuanyue, JOACHIM S. Design of magnetic bearing controller using Madyn 2000[J]. Chinese Journal of Turbomachinery, 2017, 59(4): 51-59,78.
|
[19] |
杨先,李洪斌. 有机朗肯循环发电技术的原理及应用[J]. 大众科技,2020,22(9): 61-63. doi: 10.3969/j.issn.1008-1151.2020.09.019
YANG Xian, LI Hongbin. Principle and application organic Rankine cycle power generation technology[J]. Popular Science & Technology, 2020, 22(9): 61-63. doi: 10.3969/j.issn.1008-1151.2020.09.019
|
[20] |
HERZOG R, BUHLER P, GAHLER C, et al. Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings[J]. IEEE Transactions on Control Systems Technology, 1996, 4(5): 580-586. doi: 10.1109/87.531924
|
[21] |
宋腾,韩邦成,郑世强,等. 基于最小位移的磁悬浮转子变极性 LMS 反馈不平衡补偿[J]. 振动与冲击,2015,34(7): 24-32.
SONG Teng, HAN Bangcheng, ZHENG Shiqiang, et al. Variable polarity LMS feedback based on displacement nulling to compensate unbalance of magnetic bearing[J]. Journal of Vibration and Shock, 2015, 34(7): 24-32.
|