Citation: | BI Jingguo, KE Zhihao, YANG Yiying, LI Zhengyan, DENG Zigang. Lateral Control of Permanent Magnet Electrodynamic Suspension Vehicle Based on Improved Nonlinear Model Predictive Controller[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240494 |
[1] |
LIU B, SUN C, WANG B, et al. Adaptive speed planning of connected and automated vehicles using multi-light trained deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 3533-3546. doi: 10.1109/TVT.2021.3134372
|
[2] |
邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报,2022,57(3): 455-474,530.
DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474,530.
|
[3] |
林国斌,刘万明,徐俊起,等. 中国高速磁浮交通的发展机遇与挑战[J]. 前瞻科技,2023,2(4): 7-18.
LIN Guobin, LIU Wanming, XU Junqi, et al. Opportunities and challenges for the development of high-speed maglev transportation in China[J]. Science and Technology Foresight, 2023, 2(4): 7-18.
|
[4] |
赵春发,刘浩东,冯洋,等. 五位姿参数下车载永磁体与永磁轨道之间的磁力特性研究[J]. 西南交通大学学报,2024,59(4): 804-811.
ZHAO Chunfa, LIU Haodong, FENG Yang, et al. Magnetic force characteristics between on-board permanent magnet and permanent magnetic rail considering five pose parameters[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 804-811.
|
[5] |
胡永攀,曾杰伟,王志强,等. 超高速永磁电动悬浮系统性能优化[J]. 西南交通大学学报,2023,58(4): 773-782.
HU Yongpan, ZENG Jiewei, WANG Zhiqiang, et al. Performance optimization of ultra-high speed permanent magnet electrodynamic suspension system[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 773-782.
|
[6] |
QIN W, BIRD J Z. Electrodynamic wheel magnetic rolling resistance[J]. IEEE Transactions on Magnetics, 2017, 53(8): 8107407.1-8107407.7.
|
[7] |
SHI H F, KE Z H, ZHENG J, et al. An effective optimization method and implementation of permanent magnet electrodynamic wheel for maglev car[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 8369-8381. doi: 10.1109/TVT.2023.3245620
|
[8] |
WRIGHT J D. Modeling, analysis, and control of a radial electrodynamic wheel vehicle and analysis of an axial electrodynamic wheel[D]. Charlotte: The University of North Carolina at Charlotte, 2019.
|
[9] |
FUJII N, NONAKA S, HAYASHI G. Design of magnet wheel integrated own drive[J]. IEEE Transactions on Magnetics, 1999, 35(5): 4013-4015. doi: 10.1109/20.800739
|
[10] |
FUJII N, HAYASHI G, SAKAMOTO Y. Characteristics of magnetic lift, propulsion and guidance by using magnet wheels with rotating permanent magnets[C]//Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy. Rome: IEEE, 2002: 257-262.
|
[11] |
JUNG K S. Parametric design of contact-free transportation system using the repulsive electrodynamic wheels[J]. Journal of the Korea Academia-Industrial Cooperation Society, 2016, 17(3): 310-316. doi: 10.5762/KAIS.2016.17.3.310
|
[12] |
JUNG K S. Transfer system using radial electrodynamic wheel over conductive track[J]. The Korea Academia-Industrial Cooperation Society, 2017, 18(11): 794-801.
|
[13] |
刘新,邓自刚,梁乐,等. 基于斜置环形Halbach永磁轮的磁浮列车“悬浮-导向-推进” 一体化方案设计[J]. 机车电传动,2023(2): 90-96.
LIU Xin, DENG Zigang, LIANG Le, et al. Levitation-guidance-propulsion integrated design for maglev trains based on oblique ring Halbach permanent magnet wheels[J]. Electric Drive for Locomotives, 2023(2): 90-96.
|
[14] |
ZHANG Z, DENG Z G, ZHANG S, et al. Design and operating mode study of a new concept maglev car employing permanent magnet electrodynamic suspension technology[J]. Sustainability, 2021, 13(11): 5827.1-5827.20.
|
[15] |
徐俊起,林国斌,荣立军,等. 中低速磁浮列车悬浮控制技术成果及应用[J]. 铁道技术标准(中英文),2022(10): 34-39.
XU Junqi, LIN Guobin, RONG Lijun, et al. Research achievements and application of levitation control technology for medium-low speed maglev train[J]. Railway Technical Standard (Chinese & English), 2022(10): 34-39.
|
[16] |
DE BOEIJ J, STEINBUCH M, GUTIERREZ H. Real-time control of the 3-DOF sled dynamics of a null-flux maglev system with a passive sled[C]//2006 IEEE International Symposium on Industrial Electronics. Montreal: IEEE, 2006: 2549-2555.
|
[17] |
ZHANG B J, KE Z H, LI Z Y, et al. Yawing stability and manipulative approach design for maglev car based on active disturbance rejection control[J]. Asian Journal of Control, 2024, 26(2): 1003-1016. doi: 10.1002/asjc.3246
|
[18] |
LI Z Y, KE Z H, SHI J H, et al. Investigation of RBF-SMC control strategy for vertical dynamics of maglev car considering temperature rise effects[J/OL]. IEEE Transactions on Intelligent Vehicles, 2024, 3456784.1-3456784.14(2024-09-10)[2024-09-28]. https://ieeexplore.ieee.org/document/10670497.
|
[19] |
BIRD J, LIPO T A. Characteristics of an electrodynamic wheel using a 2-D steady-state model[J]. IEEE Transactions on Magnetics, 2007, 43(8): 3395-3405. doi: 10.1109/TMAG.2007.900572
|
[20] |
BIRD J, LIPO T A. Calculating the forces created by an electrodynamic wheel using a 2-D steady-state finite-element method[J]. IEEE Transactions on Magnetics, 2008, 44(3): 365-372. doi: 10.1109/TMAG.2007.913038
|
[21] |
PAUL S, BIRD J Z. A 3-D analytic eddy current model for a finite width conductive plate[J]. COMPEL: the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2013, 33(1/2): 688-706. doi: 10.1108/COMPEL-03-2013-0083
|
[22] |
闫玉盼,饶兵,刘砚菊,等. 基于非线性模型预测的四旋翼无人机轨迹跟踪控制[J]. 沈阳理工大学学报,2024,43(1): 36-43,49.
YAN Yupan, RAO Bing, LIU Yanju, et al. Trajectory tracking control of quadrotor based on nonlinear model predictive control[J]. Journal of Shenyang Ligong University, 2024, 43(1): 36-43,49.
|
[23] |
KAMEL M, ALEXIS K, ACHTELIK M, et al. Fast nonlinear model predictive control for multicopter attitude tracking on SO(3)[C]//2015 IEEE Conference on Control Applications (CCA). Sydney: IEEE, 2015: 1160-1166.
|
[24] |
许鹏,邢伯阳,刘宇飞,等. 基于扩张状态观测器和模型预测方法的四足机器人抗干扰复合控制[J]. 兵工学报,2023,44(增2): 12-21.
XU Peng, XING (Bai| Bo)(Yang), LIU Yufei, et al. Anti-disturbance composite controller design of quadruped robot based on extended state observer and model predictive control technique[J]. Acta Armamentarii, 2023, 44(S2): 12-21.
|
[25] |
HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906. doi: 10.1109/TIE.2008.2011621
|
[26] |
王天威,黄军魁. 控制之美(卷2): 最优化控制MPC与卡尔曼滤波[M]. 北京:清华大学出版社,2023.
|
[27] |
REIF K, UNBEHAUEN R. The extended Kalman filter as an exponential observer for nonlinear systems[J]. IEEE Transactions on Signal Processing, 1999, 47(8): 2324-2328. doi: 10.1109/78.774779
|
[28] |
LI J, XIA Y Q, QI X H, et al. On convergence of the discrete-time nonlinear extended state observer[J]. Journal of the Franklin Institute, 2018, 355(1): 501-519. doi: 10.1016/j.jfranklin.2017.11.019
|
[29] |
陈松林,王鑫,何宗儒. 一种兼顾带宽拓展和噪声抑制的ESO参数整定方法[J]. 控制与决策,2018,33(10): 1908-1914.
CHEN S L, WANG X, HE Z R. A parameter tuning method for extended state observer with balance of bandwidth expansion and noise suppression[J]. Control and Decision, 2018, 33(10): 1908-1914.
|
[30] |
郭永飞,张荣彬,姚植元,等. 基于ESO-MPC的核电厂协调系统优化控制研究[J]. 核动力工程,2024,45(6): 178-184.
GUO Yongfei, ZHANG Rongbin, YAO Zhiyuan, et al. Research on optimization control of nuclear power plant coordination system based on ESO-MPC[J]. Nuclear Power Engineering, 2024, 45(6): 178-184.
|
[31] |
HUANG R, PATWARDHAN S C, BIEGLER L T. Robust stability of nonlinear model predictive control based on extended Kalman filter[J]. Journal of Process Control, 2012, 22(1): 82-89. doi: 10.1016/j.jprocont.2011.10.006
|
[1] | WANG Tao, HUANG Jingchun, ZHOU Xingzhi, JIN Jing. Sensorless Control of Permanent Magnet Synchronous Motor Based on Improved Super-Twisting Sliding Mode Observer[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220793 |
[2] | LI Zikang, DAI Chunhui, HUANG Cuicui, LONG Zhiqiang. Active Disturbance Rejection Speed Control for Maglev Trains Based on Multiple Population Genetic Algorithm[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240113 |
[3] | XU Xianze, SONG Mingxing, GONG Yongxing, XU Fengqiu, WANG Dijin, SUI Bowen, GUO Qingquan. Fractional-Order Sliding Mode Control for Maglev Rotary Table Based on Disturbance Compensation[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 766-775. doi: 10.3969/j.issn.0258-2724.20230412 |
[4] | ZHOU Yang, ZHOU Jin, WANG Yiyu, ZHANG Yue, XU Yuanping. Modeling and Robust Control of Magnetic Bearing-Rotor System Considering Interface Contact[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 755-765. doi: 10.3969/j.issn.0258-2724.20230510 |
[5] | FENG Fu, HU Hailin, ZHONG Deming, YANG Jie. Online Parameter Identification of Linear Induction Motors Based on Improved Interconnected Full-Order Observer[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 776-785. doi: 10.3969/j.issn.0258-2724.20230507 |
[6] | GONG Lei, HE Pai, SHI Yong, ZHU Changsheng. Non-Singular Fast Terminal Sliding Mode Rotor Position Control of Active Magnetic Bearings[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240090 |
[7] | JIN Chaowu, CAO Yingqing, ZHOU Jin, YE Zhoucheng, XIN Yu. Anti-Disturbance Performance of Maglev Rotor Using Model Assisted Extended State Observer[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220803 |
[8] | WEI Jingbo, LUO Hao, GUAN Zijin. Global Fast Terminal Sliding Mode Control for Maglev Ball System Based on Disturbance Observer[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 836-844. doi: 10.3969/j.issn.0258-2724.20210941 |
[9] | SU Yixin, ZHAO Jun, ZHANG Huajun. Predictive Controller with UKBF for Marine Dynamic Positioning System[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 589-595. doi: 10.3969/j.issn.0258-2724.2018.03.021 |
[10] | WANG Keren, LUO Shihui, ZHANG Jiye. Design of Magnetic Levitation Controller and Static Stability Analysis[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 118-126. doi: 10.3969/j.issn.0258-2724.2017.01.017 |
[11] | WANG Zhifu, LIU Mingchun, ZHOU Yang. Estimation of Longitudinal Speed of In-wheel Motor Driven Vehicle Using Fuzzy Extended Kalman Filter[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 1094-1099. doi: 10.3969/j.issn.0258-2724.2015.06.017 |
[12] | WU Haikang, ZHONG Zaimin, YU Zhuoping. A Novel Clutch Actuator Control Algorithm Based on Lipschitz Observer[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 270-278. doi: 10.3969/j.issn.0258-2724.2015.02.010 |
[13] | HE Shengzhong, XU Jianping, WU Songrong, ZHOU Guohua, WANG Jinping. Nonlinear Analysis and Simulation of Valley Current Controlled Flyback Converter[J]. Journal of Southwest Jiaotong University, 2012, 25(3): 400-405. doi: 10.3969/j.issn.0258-2724.2012.03.008 |
[14] | ZHOU Cong, XIAO Jian, WANG Song. Application of Multirate Unscented Kalman Filter to State Estimation in Vehicle's Active Front Steering System[J]. Journal of Southwest Jiaotong University, 2012, 25(5): 849-854,894. doi: 10.3969/j.issn.0258-2724.2012.05.019 |
[15] | JIANG Lin, 2, XIAO Jian, WANG Tao. Takagi-Sugeno Fuzzy State Observer for Induction Motor[J]. Journal of Southwest Jiaotong University, 2010, 23(2): 273-277. doi: 10. 3969/ j. issn. 0258-2724. |
[16] | GUO Yuanbo, ZHANG Xiaohua, CHEN Hongjun. Nonlinear Control of PWM Rectifier Based on Bilinear System Theory[J]. Journal of Southwest Jiaotong University, 2009, 22(2): 232-237. |
[17] | ZHENG Shubin, LIN Jianhm, LIN Guobin. Variable Linear Phase IIR Filter for Extraction of Track Inspection Signals[J]. Journal of Southwest Jiaotong University, 2007, 20(2): 211-216. |
[18] | SUN Ren-yun, GUO Xin, LONG Xing-xian. Development of Automobile ABS Controller Based on Threshold Control Method[J]. Journal of Southwest Jiaotong University, 2003, 16(4): 408-413. |
[19] | WANGJue, LI Zhi. A Fault Diagnosis of Dynamic Systems Based on Unknown Input Observer Schemes[J]. Journal of Southwest Jiaotong University, 2001, 14(3): 281-285. |