• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 57 Issue 3
Jul.  2022
Turn off MathJax
Article Contents
ZHOU Yang, ZHOU Jin, ZHANG Yue, XU Yuanping. Optimum Structural Design of Active Magnetic Bearing Based on RBF Approximation Model[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 682-692. doi: 10.3969/j.issn.0258-2724.20210766
Citation: ZHOU Yang, ZHOU Jin, ZHANG Yue, XU Yuanping. Optimum Structural Design of Active Magnetic Bearing Based on RBF Approximation Model[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 682-692. doi: 10.3969/j.issn.0258-2724.20210766

Optimum Structural Design of Active Magnetic Bearing Based on RBF Approximation Model

doi: 10.3969/j.issn.0258-2724.20210766
  • Received Date: 28 Sep 2021
  • Rev Recd Date: 10 Mar 2022
  • Publish Date: 13 Apr 2022
  • In active magnetic bearing (AMB)-rotor system, the unbalance vibration of system is caused by the uneven mass distribution with respect to the axis. In order to improve the system stability and reduce the unbalance vibration of the rotor at first-order bending critical speed, the mechatronic model of AMB-flexible rotor system considering unbalanced force and unbalanced magnetic pull is established, and combined with the radial basis function (RBF) neural network algorithm, an approximation model of rotor vibration amplitude related to the structure parameters of AMB is obtained. Combined with parametric sensitivity analysis and multi-island genetic algorithm (MIGA), the structural parameters are optimizied with the goal of minimizing the amplitude of rotor vibration. Numerical simulation results show that increasing bias current, area of magnetic poles, number of turns and decreasing air gap within a certain range can increase the system damping, and can reduce unbalanced amplitude at the first-order bending critical speed. The unbalance amplitude is reduced by nearly 50% than before.

     

  • loading
  • [1]
    MASLEN E H, SCHWEITZER G, BLEULER H, et al. Magnetic bearings—theory, design and application to rotating machinery[M]. Berlin: Springer, 2009.
    [2]
    高辉. 主动磁悬浮轴承系统不平衡振动补偿研究[D]. 南京: 南京航空航天大学, 2011.
    [3]
    钟一谔. 转子动力学[M]. 北京: 清华大学出版社, 1987: 34-35.
    [4]
    王正. 转动机械的转子动力学设计[M]. 北京: 清华大学出版社, 2015: 38-39. .
    [5]
    韩辅君,房建成. 磁悬浮飞轮转子系统的现场动平衡方法[J]. 航空学报,2010,31(1): 184-190.

    HAN Fujun, FANG Jiancheng. Field balancing method for rotor system of a magnetic suspending flywheel[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 184-190.
    [6]
    章璟璇. 柔性转子动平衡及转子动力特性的研究[D]. 南京: 南京航空航天大学, 2005.
    [7]
    王星星,吴贞焕,杨国安,等. 基于改进粒子群算法的最小二乘影响系数法的理论及实验研究[J]. 振动与冲击,2013,32(8): 100-104. doi: 10.3969/j.issn.1000-3835.2013.08.018

    WANG Xingxing, WU Zhenhuan, YANG Guoan, et al. Theory and tests for least square influence coefficient method based on an improved particle swarm optimization algorithm[J]. Journal of Vibration and Shock, 2013, 32(8): 100-104. doi: 10.3969/j.issn.1000-3835.2013.08.018
    [8]
    LEI S L, PALAZZOLO A. Control of flexible rotor systems with active magnetic bearings[J]. Journal of Sound and Vibration, 2008, 314(1/2): 19-38.
    [9]
    INOUE T, LIU J, ISHIDA Y, et al. Vibration control and unbalance estimation of a nonlinear rotor system using disturbance observer[J]. Journal of Vibration and Acoustics, 2009, 131(3): 11-17.
    [10]
    CUI P L, LIU Z Y, XU H, et al. Harmonic vibration force suppression of magnetically suspended rotor with frequency-domain adaptive LMS[J]. IEEE Sensors Journal, 2020, 20(3): 1166-1175. doi: 10.1109/JSEN.2019.2946628
    [11]
    CUI P L, ZHANG G X, LIU Z Y, et al. A second-order dual mode repetitive control for magnetically suspended rotor[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 4946-4956. doi: 10.1109/TIE.2019.2927184
    [12]
    万金贵,汪希平,李文鹏,等. 径向磁力轴承的结构分析与优化设计方法[J]. 武汉理工大学学报(信息与管理工程版),2010,32(1): 62-65.

    WAN Jingui, WANG Xiping, LI Wenpeng, et al. Structure analysis and optimized design method for radial magnetic bearing[J]. Journal of Wuhan University of Technology (Information & Management Engineering), 2010, 32(1): 62-65.
    [13]
    嵇尚华,张维煜,黄振跃,等. 交流主动磁轴承参数设计与优化[J]. 中国电机工程学报,2011,31(21): 150-158.

    JI Shanghua, ZHANG Weiyu, HUANG Zhenyue, et al. Parameter design and optimization of AC active magnetic bearing[J]. Proceedings of the CSEE, 2011, 31(21): 150-158.
    [14]
    张松山,周瑾,张发品. 基于多目标遗传算法的磁轴承结构优化设计[J]. 机械与电子,2013,31(8): 3-6. doi: 10.3969/j.issn.1001-2257.2013.08.001

    ZHANG Songshan, ZHOU Jin, ZHANG Fapin. Structural optimization design for magnetic bearings based on multi-objective genetic algorithm[J]. Machinery & Electronics, 2013, 31(8): 3-6. doi: 10.3969/j.issn.1001-2257.2013.08.001
    [15]
    陈帝伊. 径向磁悬浮轴承的电磁场分析和结构优化设计[D]. 济南: 山东大学, 2008.
    [16]
    景轩. 磁悬浮轴承的结构优化设计及其磁路解耦自适应控制[D]. 湘潭: 湘潭大学, 2017.
    [17]
    肖林京,张绪帅,常龙,等. 基于ANSYS和iSIGHT的磁悬浮轴承结构优化设计[J]. 轴承,2012(5): 5-8.

    XIAO Linjing, ZHANG Xushuai, CHANG Long, et al. Design and optimization of magnetic bearings based on ANSYS and iSIGHT[J]. Bearing, 2012(5): 5-8.
    [18]
    王晓远,张德政,高鹏,等. 飞轮储能用径向磁悬浮轴承结构优化设计[J]. 机械科学与技术,2018,37(7): 1048-1054.

    WANG Xiaoyuan, ZHANG Dezheng, GAO Peng, et al. Structural optimization design of radial magnetic bearing for flywheel energy storage[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(7): 1048-1054.
    [19]
    XU Y P, ZHOU J, DI L, et al. Active magnetic bearing rotor model updating using resonance and MAC error[J]. Shock and Vibration, 2015, 2015: 263062.1-263062.9.
    [20]
    徐园平. 柔性转子磁悬浮轴承支承特性辨识[D]. 南京: 南京航空航天大学, 2018.
    [21]
    吴海同. 磁悬浮高速永磁电机偏心不平衡分析与补偿研究[D]. 南京: 南京航空航天大学, 2020
    [22]
    刘雪杰,周瑾,金超武,等. 基于RBF近似模型的低速永磁电机齿槽转矩优化[J]. 微特电机,2020,48(1): 25-29. doi: 10.3969/j.issn.1004-7018.2020.01.006

    LIU Xuejie, ZHOU Jin, JIN Chaowu, et al. Optimization of cogging torque for low-speed permanent magnet motor based on RBF approximation model[J]. Small & Special Electrical Machines, 2020, 48(1): 25-29. doi: 10.3969/j.issn.1004-7018.2020.01.006
    [23]
    吴海同,周瑾,纪历. 基于单相坐标变换的磁悬浮转子不平衡补偿[J]. 浙江大学学报(工学版),2020,54(5): 963-971.

    WU Haitong, ZHOU Jin, JI Li. Unbalance compensation of magnetically suspended rotor based on single phase coordinate transformation[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(5): 963-971.
    [24]
    周瑾,高天宇,董继勇,等. 基于Isight的径向磁悬浮轴承结构优化设计[J]. 轴承,2018(7): 6-11.

    ZHOU Jin, GAO Tianyu, DONG Jiyong, et al. Optimal design for structure of radial magnetic bearings based on isight[J]. Bearing, 2018(7): 6-11.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(3)

    Article views(264) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return