• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 28 Issue 2
Apr.  2015
Turn off MathJax
Article Contents
JIANG Qilong, HU Zhenqiu. Improved Incomplete Derivative PID Control of Axial Active Magnetic Bearing[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 241-246. doi: 10.3969/j.issn.0258-2724.2015.02.006
Citation: JIANG Qilong, HU Zhenqiu. Improved Incomplete Derivative PID Control of Axial Active Magnetic Bearing[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 241-246. doi: 10.3969/j.issn.0258-2724.2015.02.006

Improved Incomplete Derivative PID Control of Axial Active Magnetic Bearing

doi: 10.3969/j.issn.0258-2724.2015.02.006
  • Received Date: 15 May 2013
  • Publish Date: 25 Apr 2015
  • In order to reduce the interference of measurement noise and improve the steady-state precision of magnetic bearing control, the active magnetic bearing of a vertical motor was adopted to analyze the influence of measurement noise on the traditional PID control. Considering that the incomplete derivative PID controller with the first-order filter and the traditional PID controller cannot meet the requirement in performance of controlling the measurement noises, an improved algorithm for the incomplete derivative PID control with the second-order filter was proposed. A simulation platform was then built in Simulink of MATLAB, and the improved algorithm was verified experimentally on the active magnetic bearing platform using C programming language. Results of simulation and experiments show that the improved algorithm can improve the static performance of the magnetic bearing. Using the incomplete derivative PID controller with the second-order filter, the steady-state error of the air gap of the magnetic bearing was about 20 m, reduced by nearly 50% (i.e., 30 m in magnitude) compared to the traditional PID controller and the incomplete derivative PID controller with the first-order filter. This proves the effectiveness of the improved algorithm.

     

  • loading
  • 虞烈.可控磁悬浮转子系统
    [M].北京:科学出版社,2003: 4-5.
    朱熀秋,邓智泉,严仰光,等. 无轴承电机的原理及研究现状
    FUKATA S, YUTANIK. Characteristics of electromagnetic systems of magnetic bearings biased with permanent magnets
    MCMULLEN P T,HUYNH C S,HAYES R J. Combination radial-axial magnetic bearing
    [J]. 微电机,2000,33(6): 29-31. ZHU Huangqiu, DENG Zhiquan, YAN Yangguang, et al. The principle of bearingless motor and its study status
    TAKAMOTO Y, CHIBA A, FUKAO T. Test results on a prototype bearing less induction motor with five-axis magnetic suspension
    [J]. Micromotor, 2000, 33(6): 29-31.
    曾励,朱晃秋,曾学明,等. 永磁偏置的混合磁悬浮轴承的研究
    [C]//Proceedings of 6th International Symposium on Magnetic Bearings. Cambridge: MIT, 1998: 234-243.
    程佳驹,成秋良,潘伟,等. 无轴承电机轴向混合磁轴承自抗扰控制
    STEWART D. A platform with six degrees of freedom
    ZHONG Yi, LIU Quan. Improved adaptive filtering application based on DSP for active magnetic bearing system
    [C]//Proceedings of 7th International Symposium on Magnetic Bearings. Switzerland:
    [s.n.], 2000: 473-478.
    刘合祥,胡敏强,余海涛,等. 基于磁悬浮小车系统的自适应模糊滑模-PID混合控制方案
    蓝益鹏,邱超. 磁悬浮永磁直线电动机悬浮系统模糊PID控制器的设计
    [C]//Proceedings of 7th International Power Electronics Conference. Yokohama:
    肖闽进,张建生,钱显毅. 基于模糊自适应的主动磁悬浮系统稳定性控制
    [s.n.], 1995: 334-339.
    卢立户,刘海娟,诸德宏,等. 轴向主动磁轴承的模糊自抗扰控制
    丁力,房建成,魏彤,等.一种抑制扰动的轴向磁轴承鲁棒控制新方法
    刘金琨. 先进PID控制MATLAB仿真
    [J]. 中国机械工程,1999,10(4): 387-389. ZENG Li, ZHU Huangqiu, ZENG Xueming, et al. Research of permanent magnet biased hybrid magnetic levitation bearing
    [J]. Chinese Mechanical Engineering,1999, 10(4): 387-389.
    [J]. 电机与控制学报,2008,12(4): 365-370. CHENG Jiaju, CHENG Qiuliang, PAN Wei, et al. Anti-interference control of bearing less motor axial hybrid magnetic bearing
    [J]. Electric Machines and Control, 2008, 12(4): 365-370.
    [C]//Proceedings of the Institution of Mechanic Engineer. 1965, 180: 371-386.
    [C]//Proceedings of 8th International Conference on Signal Processing.
    [S.l.]: IEEE, 2006: 16-20.
    [J]. 电工技术学报,2013,28(6): 93-100. LIU Hexiang, HU Mingqiang, YU Haitao, et al. An scheme using adaptive fuzzy sliding mode PID on magnetic vehicle
    [J]. Transactions of China Electrotechnical Society, 2013, 28(6): 93-100.
    [J]. 机床与液压,2013,41(7): 94-100. LAN Yipeng, QIU Chao. The controller design using fuzzy pid on magnetic levitation permanent magnet linear motor
    [J]. Machine Tool Hydraulics, 2013, 41(7): 94-100.
    [J]. 南京航空航天大学学报,2013,45(3): 190-195. XIAO Minjin, ZHANG Jiansheng, QIAN Xianyi. The stability control of active magnetic system based on adaptive fuzzy method
    [J]. Journal of Nanjing University of Aeronautics Astronautics, 2013, 45(3): 190-195.
    [J]. 轴承,2011(10): 26-30. LU Lihu, LIU Haijuan, ZHU Dehong, et al. Fuzzy anti-interference control of axial active magnetic bearings
    [J]. Bearing, 2011(10): 26-30.
    [J]. 北京航空航天大学学报,2010,36(4): 421-425. DING Li, FANG Jiangcheng, WEI Tong, et al. A new method of the axial magnetic bearing robust control for disturbance rejection
    [J]. Journal of Beijing university of aeronautics and astronautics, 2010, 36(4): 421-425.
    [M]. 北京:电子工业出版社,2004: 125-205.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(896) PDF downloads(431) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return