• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 58 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
WEI Jingbo, LUO Hao, GUAN Zijin. Global Fast Terminal Sliding Mode Control for Maglev Ball System Based on Disturbance Observer[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 836-844. doi: 10.3969/j.issn.0258-2724.20210941
Citation: WEI Jingbo, LUO Hao, GUAN Zijin. Global Fast Terminal Sliding Mode Control for Maglev Ball System Based on Disturbance Observer[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 836-844. doi: 10.3969/j.issn.0258-2724.20210941

Global Fast Terminal Sliding Mode Control for Maglev Ball System Based on Disturbance Observer

doi: 10.3969/j.issn.0258-2724.20210941
  • Received Date: 23 Nov 2021
  • Rev Recd Date: 12 Apr 2022
  • Available Online: 16 Jun 2023
  • Publish Date: 22 Apr 2022
  • In order to solve model uncertainty and susceptibility to external disturbances of the maglev ball system, a global fast terminal sliding mode control (GFTSMC) method based on a terminal sliding mode disturbance observer (TSMDO) was proposed. Firstly, the mathematical model of the maglev ball system was analyzed, and its dynamic equation was established. Then, a TSMDO was designed to observe and estimate system disturbances. It was proven that the estimated disturbance error of the observer converged in finite time. Secondly, in order to overcome the influence of system uncertainty and external disturbance, a global fast terminal sliding-mode controller (GFTSMC) based on a TSMDO was developed to realize the global fast convergence. The designed control law did not include switching terms, which could weaken the chattering and improve the anti-disturbance and robustness of the system. Finally, the effectiveness of the proposed TSMDO-GFTSMC was verified by simulation. The results show that compared with the continuous sliding mode control method based on the extended state observer, the response time of the maglev ball floating is shortened by 0.38 s, and the displacement deviation is reduced by 90%. The tracking error is reduced from 0.420 mm to 0.032 mm. The proposed method improves the observation accuracy against disturbance, optimizes the control effect of the maglev ball system, and enhances the robustness of the system.

     

  • loading
  • [1]
    熊嘉阳,邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报,2021,21(1): 177-198.

    XIONG Jiayang, DENG Zigang. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177-198.
    [2]
    刘强,赵明师,韩邦成,等. 磁悬浮框架飞轮磁轴承技术研究与发展现状[J]. 宇航学报,2019,40(11): 1251-1261.

    LIU Qiang, ZHAO Mingshi, HAN Bangcheng, et al. Research and development status of magnetic bearing technology on magnetically suspended gimballing flywheel[J]. Journal of Astronautics, 2019, 40(11): 1251-1261.
    [3]
    DING H F, ZHU H Q, HUA Y Z. Optimization design of bearingless synchronous reluctance motor[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 1-5.
    [4]
    GHOSH A, KRISHNAN T R, TEJASWY P, et al. Design and implementation of a 2-DOF PID compensation for magnetic levitation systems[J]. ISA Transactions, 2014, 53(4): 1216-1222. doi: 10.1016/j.isatra.2014.05.015
    [5]
    彭辉,徐锦华,侯海良. 模糊控制在磁悬浮球系统实时控制中的应用[J]. 控制工程,2009,16(3): 278-281.

    PENG Hui, XU Jinhua, HOU Hailiang. Application of fuzzy control to real-time control of magnetic levitation ball system[J]. Control Engineering of China, 2009, 16(3): 278-281.
    [6]
    朱坚民,沈正强,李孝茹,等. 基于神经网络反馈补偿控制的磁悬浮球位置控制[J]. 仪器仪表学报,2014,35(5): 976-986.

    ZHU Jianmin, SHEN Zhengqiang, LI Xiaoru, et al. Magnetic levitation ball position control based on neural network feedback compensation control[J]. Chinese Journal of Scientific Instrument, 2014, 35(5): 976-986.
    [7]
    李广. 磁悬浮球系统的鲁棒控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
    [8]
    沈莹雅,张建生,张远,等. 主动磁悬浮轴承的鲁棒反演滑模控制[J]. 机械制造与自动化,2016,45(1): 194-198.

    SHEN Yingya, ZHANG Jiansheng, ZHANG Yuan, et al. Robust backstepping sliding-mode control of active magnetic bearing[J]. Machine Building & Automation, 2016, 45(1): 194-198.
    [9]
    刘金琨,孙富春. 滑模变结构控制理论及其算法研究与进展[J]. 控制理论与应用,2007,24(3): 407-418.

    LIU Jinkun, SUN Fuchun. Research and development on theory and algorithms of sliding mode control[J]. Control Theory & Applications, 2007, 24(3): 407-418.
    [10]
    张井岗,方线伟,赵志诚. 磁悬浮球系统的分数阶滑模控制[J]. 南京理工大学学报,2014,38(1): 72-77.

    ZHANG Jinggang, FANG Xianwei, ZHAO Zhicheng. Fractional order sliding mode control of magnetic levitation ball system[J]. Journal of Nanjing University of Science and Technology, 2014, 38(1): 72-77.
    [11]
    赵磊,王军晓,黄光普,等. 基于扩张状态观测器的磁悬浮球连续滑模控制[J]. 高技术通讯,2020,30(5): 480-486.

    ZHAO Lei, WANG Junxiao, HUANG Guangpu, et al. Continuous sliding mode control of magnetic levitation ball based on extended state observer[J]. Chinese High Technology Letters, 2020, 30(5): 480-486.
    [12]
    赵磊. 磁悬浮球系统滑模控制方法研究[D]. 杭州: 浙江工业大学, 2020.
    [13]
    王军晓,陈林杰,俞立. 基于等价输入干扰滑模观测器的磁悬浮球系统模型预测控制[J]. 控制理论与应用,2021,38(1): 137-146.

    WANG Junxiao, CHEN Linjie, YU Li. Model predictive control for magnetic levitation ball system based on equivalent input disturbance sliding mode observer[J]. Control Theory & Applications, 2021, 38(1): 137-146.
    [14]
    孙佃升,章跃进. 一种抑制初始微分峰值现象的改进型三阶时变参数扩张状态观测器[J]. 电机与控制学报,2017,21(9): 55-62.

    SUN Diansheng, ZHANG Yuejin. Improved third-order time-varying parameters nonlinear ESO restraining the derivative peaking phenomenon[J]. Electric Machines and Control, 2017, 21(9): 55-62.
    [15]
    韩俊庆,吴爱国,董娜. 基于滑模干扰观测器的机械臂终端滑模控制[J]. 中南大学学报(自然科学版),2020,51(10): 2749-2757.

    HAN Junqing, WU Aiguo, DONG Na. Terminal sliding mode control for robotic manipulator based on sliding mode disturbance observer[J]. Journal of Central South University (Science and Technology), 2020, 51(10): 2749-2757.
    [16]
    CHEN M, WU Q X, CUI R X. Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems[J]. ISA Transactions, 2013, 52(2): 198-206. doi: 10.1016/j.isatra.2012.09.009
    [17]
    李鹏,马建军,郑志强. 采用幂次趋近律的滑模控制稳态误差界[J]. 控制理论与应用,2011,28(5): 619-624.

    LI Peng, MA Jianjun, ZHENG Zhiqiang. Sliding mode control approach based on nonlinear integrator[J]. Control Theory & Applications, 2011, 28(5): 619-624.
    [18]
    李鹏. 传统和高阶滑模控制研究及其应用[D]. 长沙: 国防科学技术大学, 2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views(390) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return