• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
SHI Chunlin, YANG Peizhang, ZHANG Chao, DU Lan, YE Kai, FAN Chengxiao, LI Jian, ZU Anran. Segmentation of Small-Field-of-Viewstar Images Based on Kittler Minimum Error Algorithm[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 168-175. doi: 10.3969/j.issn.0258-2724.20190841
Citation: JIN Junjie, WANG Yanfeng, XU Chengcheng, LU Wenxuan, ZHANG Xiaoyou, SUN Feng, XU Fangchao. Design and Magnetic Force Characteristic Analysis of Magnetic Levitation Bearing for Artificial Kidney Pumps[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 795-803. doi: 10.3969/j.issn.0258-2724.20230090

Design and Magnetic Force Characteristic Analysis of Magnetic Levitation Bearing for Artificial Kidney Pumps

doi: 10.3969/j.issn.0258-2724.20230090
  • Received Date: 06 Mar 2023
  • Rev Recd Date: 20 Jun 2023
  • Available Online: 27 Mar 2024
  • Publish Date: 07 Jul 2023
  • The new method of continuous centrifugal separation instead of dialysis membrane has improved the quality of life of patients with kidney disease who depend on hemodialysis treatment. As a result, the research on artificial kidney pumps has been paid much attention by many scholars, but the conventional artificial kidney pump is supported by rolling bearings, and it thus causes problems such as high hemolysis and high thrombosis rate. In order to solve these problems, this paper developed a compact and energy-saving single-degree-of-freedom controlled magnetic levitation bearing applied to an artificial kidney pump by using the advantages of non-contact, non-lubrication, and high rotation speed of magnetic levitation bearing. The finite element analysis software was used for simulation to explore the design parameters of the radial passive control part and the axial active control part, and the overall simulation was verified. Then the structural performance of the magnetic levitation bearing was evaluated. The results show that the simulated and experimental radial displacement stiffness coefficients are 47.432 N/mm and 49.531 N/mm; the axial current stiffness coefficients are 0.144 N/AT and 0.135 N/AT, and the axial displacement stiffness coefficient is 223.071 N/mm, which meet the requirements of five-degree-of-freedom stable suspension of this magnetic levitation bearing. The designed magnetic levitation bearing simplifies the system structure, reduces the control difficulty, and lowers the power consumption of the system.

     

  • [1]
    BIKBOV B, PURCELL C A, LEVEY A S, et al. Global, regional, and national burden of chronic kidney disease, 1990 —2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. The Lancet, 2020, 395(10225): 709-733. doi: 10.1016/S0140-6736(20)30045-3
    [2]
    MOLLAHOSSEINI A, ABDELRASOUL A, SHOKER A. A critical review of recent advances in hemodialysis membranes hemocompatibility and guidelines for future development[J]. Materials Chemistry and Physics, 2020, 248: 122911.1-122911. 29.
    [3]
    ZHILO N M, LITINSKAIA E L, BAZAEV N A. Control system for glucose level regulation in peritoneal dialysis[J]. Journal of Physics: Conference Series, 2021, 2091(1): 012019.1-012019.19.
    [4]
    ZHILO N M, BAZAEV N A. Control of wearable artificial kidney[C]//2019 Ⅲ International Conference on Control in Technical Systems (CTS). Petersburg: IEEE, 2020: 31-34.
    [5]
    PARSONS A D, SANSCRAINTE C, LEONE A, et al. Dialysis disequilibrium syndrome and intracranial pressure fluctuations in neurosurgical patients undergoing renal replacement therapy: systematic review and pooled analysis[J]. World Neurosurgery, 2022,170: 2-6.
    [6]
    FLEMING G M. Renal replacement therapy review: past, present and future[J]. Organogenesis, 2011, 7(1): 2-12. doi: 10.4161/org.7.1.13997
    [7]
    VAN GELDER M K, JONG J A W, FOLKERTSMA L, et al. Urea removal strategies for dialysate regeneration in a wearable artificial kidney[J]. Biomaterials, 2020, 234: 119735. 1-119735.18
    [8]
    GURA V, RIVARA M B, BIEBER S, et al. A wearable artificial kidney for patients with end-stage renal disease[J]. JCI Insight, 2016, 1(8): e86397.1-e86397.15
    [9]
    ARIYOSHI K, ISOYAMA T, HARA S, et al. Basic study of a centrifugal separator for the implantable centrifugal artificial kidney[J]. Transactions of Japanese Society for Medical and Biological Engineering, 2017, 55: 459-459.
    [10]
    MASUZAWA T. Magnetically suspended blood pump[J]. Journal of the Japan Society of Applied Electromagnetics and Mechanics, 2017, 25(3): 325-331. doi: 10.14243/jsaem.25.325
    [11]
    胡余生,李立毅,郭伟林,等. 基于不等磁路面积设计方法的磁轴承刚度[J]. 西南交通大学学报,2022,57(3):648-656.

    HU Yusheng, LI Liyi, GUO Weilin, et al. Support stiffness of magnetic bearing based on unequal magnetic circuit area design method[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 648-656.
    [12]
    周扬,周瑾,张越,等. 基于RBF近似模型的磁悬浮轴承结构优化设计[J]. 西南交通大学学报,2022,57(3):682-692.

    ZHOU Yang, ZHOU Jin, ZHANG Yue, et al. Optimum structural design of active magnetic bearing based on RBF approximation model[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 682-692.
    [13]
    钟志贤,蔡忠侯,祁雁英. 单自由度磁悬浮系统无模型自适应控制的研究[J]. 西南交通大学学报,2022,57(3):549-557,581.

    ZHONG Zhixian, CAI Zhonghou, QI Yanying. Model-free adaptive control for single-degree-of-freedom magnetically levitated system[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 549-557,581.
    [14]
    贺艳晖,甘杨俊杰,周亮. 主动磁悬浮轴承在余热发电机的应用研究[J]. 西南交通大学学报,2022,57(3):657-664. doi: 10.3969/j.issn.0258-2724.20210860

    HE Yanhui, GAN Yangjunjie, ZHOU Liang. Application of active magnetic bearing in waste heat generator[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 657-664. doi: 10.3969/j.issn.0258-2724.20210860
    [15]
    ASAMA J, SHINSHI T, HOSHI H, et al. A new design for a compact centrifugal blood pump with a magnetically levitated rotor[J]. ASAIO Journal, 2004, 50(6): 550-556. doi: 10.1097/01.MAT.0000144364.62671.5A
    [16]
    关勇,李红伟,刘淑琴. 轴流式磁悬浮人工心脏泵磁悬浮轴承系统设计[J]. 山东大学学报(工学版),2011,41(1):151-155.

    GUAN Yong, LI Hongwei, LIU Shuqin. System design of magnetic bearings in an axial-flow artificial blood pump[J]. Journal of Shandong University (Engineering Science), 2011, 41(1): 151-155.
  • Relative Articles

    [1]ZHANG Yue, XU Yuanping, ZHOU Jin, ZHOU Yang. Vibration and Stability Evaluation of Magnetically Suspended Fluid Machinery Based on API617[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240340
    [2]WANG Meiqi, ZENG Siheng, LI Yuan, LIU Pengfei. Research on Time Lag Control of Levitation System of Two-Degree-of-Freedom Magnetic Levitation Train[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 812-822. doi: 10.3969/j.issn.0258-2724.20230282
    [3]JIN Chaowu, XIN Yu, ZHOU Yang, ZHAO Ruijin, ZHOU Jin, XU Yuanping. Modeling and Dynamics Analysis of High-Temperature Magnetic Bearing-Rotor System[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 746-754, 822. doi: 10.3969/j.issn.0258-2724.20230667
    [4]LIU Shuqin, BIAN Zhongguo, LI Ruijian, LIU Kai, LIN Bentao, ZHAO Sipeng, ZONG Qinghui. Maglev Artificial Heart Pump and Experimental Study on ECMO[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 820-826, 862. doi: 10.3969/j.issn.0258-2724.20211012
    [5]WEI Fanan, LIU Ying. Two-Degree-of-Freedom Maglev Platform for Micro Machining[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1318-1327. doi: 10.3969/j.issn.0258-2724.20220583
    [6]SONG Chunsheng, YIN Rui, WEI Zihang, WANG Peng. Simulation on Decoupling Control of Maglev Flexible Rotor System[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 761-772. doi: 10.3969/j.issn.0258-2724.20220773
    [7]HU Yusheng, LI Liyi, GUO Weilin, LI Xin. Support Stiffness of Magnetic Bearing Based on Unequal Magnetic Circuit Area Design Method[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 648-656. doi: 10.3969/j.issn.0258-2724.20210888
    [8]GUAN Xudong, ZHOU Jin, JIN Chaowu, YAO Runhui. Misalignment Vibration Detection of Magnetic Suspension Multi-Span Rotors Based on SOGI-FLL-WPF[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 665-674. doi: 10.3969/j.issn.0258-2724.20210810
    [9]JU Jintao, XU Peng, ZHU Huangqiu, XU Tong, WANG Xiangfei, JU Fangming, DU Jiahui. Core Loss Analysis of Three Degree-of-Freedom Hybrid Magnetic Bearing with Novel Rotor Structure[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 675-681. doi: 10.3969/j.issn.0258-2724.20210903
    [10]ZHONG Zhixian, CAI Zhonghou, QI Yanying. Model-Free Adaptive Control for Single-Degree-of-Freedom Magnetically Levitated System[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 549-557, 581. doi: 10.3969/j.issn.0258-2724.20210624
    [11]ZHENG Jing, RAO Shaokai, ZHOU Jun, YANG Dan, SHEN Lixin, HUANG Shuhao. Fracture Analysis and Failure Mechanism of TA3 Limited Contact-Dynamic Compression Plates[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 411-419. doi: 10.3969/j.issn.0258-2724.20190182
    [12]ZHAO Jizhong, XU Xiang, DING Li, KAN Qianhua, KANG Guozheng. Finite Element Analysis of Rolling Strengthening Process for Wheel Tread of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1337-1347. doi: 10.3969/j.issn.0258-2724.20180803
    [13]SUN Xiaodong, CHEN Long, YANG Zebin, LI Feng, ZHU Huangqiu. Inductance Characteristics of Bearingless Permanent Magnet Synchronous Motor[J]. Journal of Southwest Jiaotong University, 2013, 26(6): 1059-1065. doi: 10.3969/j.issn.0258-2724.2013.06.014
    [14]WANG Jialin. Bandwidth Optimization Algorithm of Finite Element Models at Level of Degree of Freedom[J]. Journal of Southwest Jiaotong University, 2009, 22(2): 186-189.
    [15]ZHOU Wen, LIU Xueyi. FEM Simulation of Straightening Tongue Rail of High-Speed Turnout[J]. Journal of Southwest Jiaotong University, 2008, 21(1): 82-85,95.
    [16]ZHANG Yuan-hai, LI Qiao. Finite Element Analysis of Shear Lag Effect of Skew Box Girder Bridges[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 64-68.
    [17]ZUO De-yuan, ZHENGAn-qi. An Elastic-Plastic Finite Element Analysis on Tunnel Structures at Cycled Temperatures[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 172-175.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.6 %FULLTEXT: 21.6 %META: 67.1 %META: 67.1 %PDF: 11.3 %PDF: 11.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.9 %其他: 13.9 %上海: 1.6 %上海: 1.6 %北京: 15.4 %北京: 15.4 %南京: 3.6 %南京: 3.6 %哥伦布: 0.9 %哥伦布: 0.9 %大庆: 0.2 %大庆: 0.2 %天津: 0.7 %天津: 0.7 %张家口: 4.3 %张家口: 4.3 %德阳: 0.4 %德阳: 0.4 %成都: 1.1 %成都: 1.1 %扬州: 0.2 %扬州: 0.2 %无锡: 0.5 %无锡: 0.5 %昆明: 0.2 %昆明: 0.2 %明尼阿波利斯: 0.4 %明尼阿波利斯: 0.4 %曼谷: 0.2 %曼谷: 0.2 %杉户町: 1.6 %杉户町: 1.6 %杭州: 1.3 %杭州: 1.3 %格兰特县: 0.5 %格兰特县: 0.5 %武汉: 1.3 %武汉: 1.3 %池州: 1.6 %池州: 1.6 %沈阳: 0.7 %沈阳: 0.7 %泉州: 0.4 %泉州: 0.4 %洛阳: 0.2 %洛阳: 0.2 %深圳: 0.4 %深圳: 0.4 %漯河: 1.1 %漯河: 1.1 %石家庄: 1.1 %石家庄: 1.1 %秦皇岛: 0.5 %秦皇岛: 0.5 %芒廷维尤: 17.9 %芒廷维尤: 17.9 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.4 %苏州: 0.4 %莫斯科: 0.5 %莫斯科: 0.5 %菏泽: 0.4 %菏泽: 0.4 %衡水: 0.2 %衡水: 0.2 %西宁: 18.9 %西宁: 18.9 %西安: 0.5 %西安: 0.5 %诺沃克: 2.9 %诺沃克: 2.9 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.7 %运城: 0.7 %郑州: 0.4 %郑州: 0.4 %重庆: 0.5 %重庆: 0.5 %长沙: 1.1 %长沙: 1.1 %青岛: 0.9 %青岛: 0.9 %马鞍山: 0.2 %马鞍山: 0.2 %其他上海北京南京哥伦布大庆天津张家口德阳成都扬州无锡昆明明尼阿波利斯曼谷杉户町杭州格兰特县武汉池州沈阳泉州洛阳深圳漯河石家庄秦皇岛芒廷维尤芝加哥苏州莫斯科菏泽衡水西宁西安诺沃克贵阳运城郑州重庆长沙青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(2)

    Article views(374) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return