Citation: | WANG Ying, LIU Fanglin, LIU Shijie, LUO Cheng, WU Qian. Influence of Speed on Levitation Force of Medium−Low-Speed Maglev Train[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 792-798. doi: 10.3969/j.issn.0258-2724.20210913 |
Electromagnet provides suspension force for medium−low-speed maglev train. When the electromagnet moves relatively to a rail, eddy current is generated on the rail. The external magnetic field generated by the track eddy current offsets part of the original magnetic field generated by the electromagnet, causing the decrease of the suspension force provided by the electromagnet. Firstly, the formation of rail eddy current and its effects on air gap magnetic field are analyzed at different vehicle speeds. The influence of train speeds on the suspension force is further studied. Secondly, the laminated F-rail is used to suppress eddy current effect. Combined with the mechanism of the laminated F-rail lifting suspension force, the influence of rail eddy current on the suspension force is analyzed with the F-rails of different laminated layers. Finally, the electromagnet structure of Changsha Maglev Fast Line is simulated by using finite element software. The results show that the laminated F-rail can reduce the rail eddy current, and the air gap magnetic field gradually approaches the one under static conditions. When the coil at the end of the electromagnet model moves at the speed of 120 km/h, the suspension force is 5.7 kN without the non-laminated F-rail and 7.5 kN with the laminated F-rail of two layers, increasing by 30% compared with the case of the non-laminated F-rail.
[1] |
钱清泉, 高仕斌. 中低速磁浮交通发展战略研究[M]. 成都: 西南交通大学出版社, 2019.
|
[2] |
PRASAD N, JAIN S, GUPTA S. Electrical components of maglev systems: emerging trends[J]. Urban Rail Transit, 2019, 5(2): 67-79. doi: 10.1007/s40864-019-0104-1
|
[3] |
GOU J S. Development status and global competition trends analysis of maglev transportation technology based on patent data[J]. Urban Rail Transit, 2018, 4(3): 117-129. doi: 10.1007/s40864-018-0087-3
|
[4] |
DONG F L, HUANG Z, LI X F, et al. R&D of no-insulation HTS magnets using 2G wires in a prototype for maglev applications[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 1-5.
|
[5] |
曾国保. 中低速磁浮交通的适应性及工程化发展方向[J]. 铁道工程学报,2016,33(10): 111-115. doi: 10.3969/j.issn.1006-2106.2016.10.023
ZENG Guobao. The adaptability and the improvement in engineering of the lower-medium speed maglev transit system[J]. Journal of Railway Engineering Society, 2016, 33(10): 111-115. doi: 10.3969/j.issn.1006-2106.2016.10.023
|
[6] |
YAMAMURA S, ITO T. Analysis of speed characteristics of attracting magnet for magnetic levitation of vehicles[J]. IEEE Transactions on Magnetics, 1975, 11(5): 1504-1507.
|
[7] |
LI G C, JIA Z, HE G, et al. Analysis of eddy current induced in track on medium-low speed maglev train[J]. IOP Conference Series: Earth and Environmental Science, 2017, 69(1): 012184.1-012184.10.
|
[8] |
罗芳,张昆仑. 常导磁悬浮车悬浮电磁铁的电磁场分析[J]. 机车电传动,2002(1): 27-28,34. doi: 10.3969/j.issn.1000-128X.2001.01.008
LUO Fang, ZHANG Kunlun. Electromagnetic field analysis on suspension magnet of EMS maglev vehicle[J]. Electric Drive for Locomotive, 2002(1): 27-28,34. doi: 10.3969/j.issn.1000-128X.2001.01.008
|
[9] |
杨志华. 中低速磁浮列车悬浮系统仿真研究[D]. 成都: 西南交通大学, 2014.
|
[10] |
BORCHERTS R, DAVIS L. Lift and drag forces for the attractive electromagnetic suspension systems[J]. IEEE Transactions on Magnetics, 1974, 10(3): 425-428. doi: 10.1109/TMAG.1974.1058452
|
[11] |
DU J, OHSAKI H. Numerical analysis of eddy current in the EMS-maglev system[C]//Sixth International Conference on Electrical Machines and Systems. Beijing: IEEE, 2003: 761-764.
|
[12] |
郑丽莉,李杰,李金辉. 钢轨涡流对磁浮列车悬浮电磁力影响的研究[J]. 计算机仿真,2011,28(8): 328-331,336. doi: 10.3969/j.issn.1006-9348.2011.08.080
ZHENG Lili, LI Jie, LI Jinhui. Research on influence of eddy current induced in steel rails on levitation force of maglev[J]. Computer Simulation, 2011, 28(8): 328-331,336. doi: 10.3969/j.issn.1006-9348.2011.08.080
|
[13] |
ZHANG M, LUO S H, GAO C, et al. Research on the mechanism of a newly developed levitation frame with mid-set air spring[J]. Vehicle System Dynamics, 2018, 56(12): 1797-1816. doi: 10.1080/00423114.2018.1435892
|
[14] |
梁潇,戴小冬,谭超,等. 既有长沙磁浮线路桥梁结构提速适用性研究[J]. 铁道科学与工程学报,2019,16(6): 1493-1498. doi: 10.19713/j.cnki.43-1423/u.2019.06.019
LIANG Xiao, DAI Xiaodong, TAN Chao, et al. Study on the speed-increasing adaptation of the bridge structures in the existing maglev lines in Changsha[J]. Journal of Railway Science and Engineering, 2019, 16(6): 1493-1498. doi: 10.19713/j.cnki.43-1423/u.2019.06.019
|
[15] |
詹佳雯. 中低速磁浮列车直线感应电机及悬浮电磁铁分析[D]. 杭州: 浙江大学, 2019.
|
[1] | ZHOU Ran, LU Sijia, SONG Yuanyuan, WU Liping, SHAN Guangkun, SUN Feng, ZHANG Zhiqiang, QU Jianzhen. Fault Monitoring of Electromagnetic Vibration Damping System Based on Magnetic Flux Density Signals[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 1060-1070. doi: 10.3969/j.issn.0258-2724.20240580 |
[2] | JIANG Qilong, YAO Weifeng, ZHANG Ye. Fault Diagnosis of Suspended Electromagnet Based on Current Change Rate Increment[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 1042-1049. doi: 10.3969/j.issn.0258-2724.20250067 |
[3] | ZHANG Min, LUO Shujuan, CAO Yi, LUO Shihui. End Effect and Electromagnetic Force Characteristics of Two Adjacent Linear Induction Motors[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 842-850. doi: 10.3969/j.issn.0258-2724.20240250 |
[4] | JIN Junjie, WANG Yanfeng, XU Chengcheng, LU Wenxuan, ZHANG Xiaoyou, SUN Feng, XU Fangchao. Design and Magnetic Force Characteristic Analysis of Magnetic Levitation Bearing for Artificial Kidney Pumps[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 795-803. doi: 10.3969/j.issn.0258-2724.20230090 |
[5] | SHEN Lu, ZHANG Liwei, XIU Sanmu, ZHANG Menglei, YANG Changqing, LYV Shangyang. Calculation Method of Magnetic Force of Hybrid Electromagnets Based on Nonlinear Inductance[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 786-794. doi: 10.3969/j.issn.0258-2724.20230551 |
[6] | XIAO Ling, ZHOU You, ZHAO Chenxi, ZHENG Shandong, CHENG Wenjie, FENG Sheng. Vibration Reduction of Bearing-Rotor with Electromagnetic Damper Considering Dynamic Stiffness[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 957-964. doi: 10.3969/j.issn.0258-2724.20230065 |
[7] | LIU Qinghui, SHAN Lei, MA Weihua, LU Xiangyu, LUO Shihui. Electromagnetic Force Analysis of Medium−Low-Speed Maglev Considering Remanence[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 863-869, 895. doi: 10.3969/j.issn.0258-2724.20220281 |
[8] | FU Shanqiang, WU Donghua, HAN Weitao, ZHOU Ying. Modeling and Analysis of High-Speed Maglev Electromagnets Based on Nonlinear Materials[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 879-885. doi: 10.3969/j.issn.0258-2724.20220741 |
[9] | HUANG Cuicui, LI Xiaolong, YANG Yang, LONG Zhiqiang. Mechanical-Electromagnetic Suspension Compound Vibration Isolation Control Based on Active Disturbance Rejection Technology[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 582-587, 617. doi: 10.3969/j.issn.0258-2724.20210850 |
[10] | LUO Cheng, ZHANG Kunlun, WANG Ying. Stability Control of Electrodynamic Suspension with Permanent Magnet and Electromagnet Hybrid Halbach Array[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 574-581. doi: 10.3969/j.issn.0258-2724.20210868 |
[11] | ZHANG Baoan, YU Dalian, LI Haitao, LIANG Xin, HUANG Chao. Influence of Flexibility Characteristics of Levitation Chassis on Curve Negotiation Performance of High-Speed Maglev Vehicle[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 475-482. doi: 10.3969/j.issn.0258-2724.20210635 |
[12] | SUN Yougang, XU Junqi, HE Zhenyu, LI Fengxing, CHEN Chen, LIN Guobin. Sliding Mode Cooperative Control of Multi-Electromagnet Suspension System Based on Error Cross Coupling[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 558-565. doi: 10.3969/j.issn.0258-2724.20210924 |
[13] | LI Songqi, LUO Cheng, ZHANG Kunlun. Correction of Magnetic Force of Hybrid Electromagnet Based on Magnetic Flux Leakage Compensation[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 604-609. doi: 10.3969/j.issn.0258-2724.20210843 |
[14] | LIANG Da, ZHANG Kunlun, XIAO Song. Equivalent Circuit Model of Suspension Electromagnet with Current Ringing Characteristics[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 588-596. doi: 10.3969/j.issn.0258-2724.20210886 |
[15] | JIANG Qilong, LIANG Da, YAN Feng. Application of Digital One-Cycle Control for Current in Electromagnetic Suspension System[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 1-8, 22. doi: 10.3969/j.issn.0258-2724.20170771 |
[16] | LI Songqi, ZHANG Kunlun. Self-excited Vibration of Single-Magnet Suspension System: Stability Analysis and Inhibition[J]. Journal of Southwest Jiaotong University, 2015, 28(3): 410-416. doi: 10.3969/j.issn.0258-2724.2015.03.004 |
[17] | ZHAO Chun-fa, ZHAI Wan-min. Dynamic Characteristics of Electromagnetic Levitation Systems[J]. Journal of Southwest Jiaotong University, 2004, 17(4): 464-468. |
[18] | Wu Wentao, LiJing Qin Jun, . Analysis of Transient Electromagnetic Scattering for Railway Ballast[J]. Journal of Southwest Jiaotong University, 1999, 12(1): 42-46. |
[19] | Liu Shangju, Yan Ju, Chen Qiu. Study of Controlling of an Electromagnet and Permanent Magnet Suspension Isolation System[J]. Journal of Southwest Jiaotong University, 1999, 12(3): 279-283. |
1. | 赵园,何云风,郝宋,方亮,冯修军. 中低速磁悬浮列车端部电磁铁优化设计. 微特电机. 2024(12): 33-36 . ![]() | |
2. | 刘清辉,马卫华,单磊,罗世辉,刘静,秦龙泉. 基于试验数据的中低速磁浮列车电磁铁结构参数分析. 交通运输工程学报. 2023(06): 232-243 . ![]() |