• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 57 Issue 3
Jul.  2022
Turn off MathJax
Article Contents
LIANG Da, ZHANG Kunlun, XIAO Song. Equivalent Circuit Model of Suspension Electromagnet with Current Ringing Characteristics[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 588-596. doi: 10.3969/j.issn.0258-2724.20210886
Citation: LIANG Da, ZHANG Kunlun, XIAO Song. Equivalent Circuit Model of Suspension Electromagnet with Current Ringing Characteristics[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 588-596. doi: 10.3969/j.issn.0258-2724.20210886

Equivalent Circuit Model of Suspension Electromagnet with Current Ringing Characteristics

doi: 10.3969/j.issn.0258-2724.20210886
  • Received Date: 10 Nov 2021
  • Rev Recd Date: 17 Jan 2022
  • Publish Date: 11 Mar 2022
  • Electromagnetic suspension (EMS) type maglev trains adjust currents of suspension electromagnets through maglev choppers and then control the suspension force to keep the car body stable suspension. The suspension electromagnet current ringing generated by the maglev chopper will increase the switching loss, cause electromagnetic interference (EMI), and even affect the suspension control. Studying the suspension electromagnet current ringing’s generation mechanism is helpful to find its suppression measures. An equivalent circuit model of suspension electromagnet is proposed in view of the current ringing characteristics. Firstly, the general form of the suspension electromagnet’s impedance function is derived by the driving-point function method. Then, based on the suspension electromagnet current’s unit-step response characteristics, the simplest expression of the impedance function and the corresponding equivalent circuit model are determined. Next, the influences of different circuit parameters on current ringing characteristics are analyzed by discriminant and simulation methods. Finally, with the same suspension electromagnet, the simulation and experimental waveforms of the current ringing are compared. The results show that for the specified parameters, the current ripple amplitude, ringing peak value, and ringing frequency of the suspension electromagnet obtained from the experiment are 9.7%, 20%, and 11% lower than the simulation results, respectively. In addition, the simulated current ringing attenuation time is about 1 μs, which is close to the experimental results. The simulation and experimental results of the suspension electromagnet current ringing are in good agreement in terms of the amplitude, frequency, and attenuation characteristics, validating the proposed circuit model.

     

  • loading
  • [1]
    SUN Y G, XU J Q, LIN G B, et al. RBF neural network-based supervisor control for maglev vehicles on an elastic track with network time delay[J]. IEEE Transactions on Industrial Informatics, 2022, 18(1): 509-519. doi: 10.1109/TII.2020.3032235
    [2]
    WANG P, LONG Z Q, XU Y S. Component-level fault detection for suspension system of maglev trains based on autocorrelation length and stable kernel representation[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 7594-7604. doi: 10.1109/TVT.2021.3096732
    [3]
    WANG J J, CHUNG H S H, LI R T H. Characterization and experimental assessment of the effects of parasitic elements on the MOSFET switching performance[J]. IEEE Transactions on Power Electronics, 2013, 28(1): 573-590. doi: 10.1109/TPEL.2012.2195332
    [4]
    GAITO A, SCOLLO R, PANEBIANCO G, et al. Impact of the source-path parasitic inductance on the MOSFET commutations[C]//2012 IEEE Energy Conversion Congress and Exposition. Raleigh: IEEE, 2012: 1367-1373.
    [5]
    BI C, LU R B, LI H. Prediction of electromagnetic interference noise in SiC MOSFET module[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2019, 66(5): 853-857. doi: 10.1109/TCSII.2019.2908971
    [6]
    SUN Y G, XU J Q, QIANG H Y, et al. Adaptive neural-fuzzy robust position control scheme for maglev train systems with experimental verification[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8589-8599. doi: 10.1109/TIE.2019.2891409
    [7]
    NI F, MU S Y, KANG J S, et al. Robust controller design for maglev suspension systems based on improved suspension force model[J]. IEEE Transactions on Transportation Electrification, 2021, 7(3): 1765-1779. doi: 10.1109/TTE.2021.3058137
    [8]
    蒋祥宇,王昊文,王雪琪,等. 不对称三电平悬浮斩波器[J]. 电力电子技术,2020,54(6): 132-135.

    JIANG Xiangyu, WANG Haowen, WANG Xueqi, et al. Asymmetric three-level suspension chopper[J]. Power Electronics, 2020, 54(6): 132-135.
    [9]
    DING J F, YANG X, LONG Z Q, et al. Three-dimensional numerical analysis and optimization of electromagnetic suspension system for 200 km/h maglev train considering eddy current effect[J]. IEEE Access, 2018, 6: 61547-61555. doi: 10.1109/ACCESS.2018.2876599
    [10]
    LIU T J, NING R T, WONG T T Y, et al. Modeling and analysis of SiC MOSFET switching oscillations[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(3): 747-756.
    [11]
    LIU T J, WONG T T Y, SHEN Z J. A survey on switching oscillations in power converters[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 893-908. doi: 10.1109/JESTPE.2019.2897764
    [12]
    周庭阳, 张红岩. 电网络理论[M]. 杭州: 浙江大学出版社, 1997.
    [13]
    范盛金. 一元三次方程的新求根公式与新判别式[J]. 海南师范学院学报(自然科学版),1989,2(2): 91-98.

    FAN Shengjin. A new extracting formula and a new distinguishing means on the one variable cubic equation[J]. Journal of Hainan Normal University (Natural Science), 1989, 2(2): 91-98.
    [14]
    JOSIFOVIĆ I, POPOVIĆ-GERBER J, FERREIRA J A. Improving SiC JFET switching behavior under influence of circuit parasitics[J]. IEEE Transactions on Power Electronics, 2012, 27(8): 3843-3854. doi: 10.1109/TPEL.2012.2185951
    [15]
    SAITO K, MIYOSHI T, KAWASE D, et al. Simplified model analysis of self-excited oscillation and its suppression in a high-voltage common package for Si-IGBT and SiC-MOS[J]. IEEE Transactions on Electron Devices, 2018, 65(3): 1063-1071. doi: 10.1109/TED.2018.2796314
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views(218) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return