Citation: | LIANG Da, ZHANG Kunlun, XIAO Song. Equivalent Circuit Model of Suspension Electromagnet with Current Ringing Characteristics[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 588-596. doi: 10.3969/j.issn.0258-2724.20210886 |
Electromagnetic suspension (EMS) type maglev trains adjust currents of suspension electromagnets through maglev choppers and then control the suspension force to keep the car body stable suspension. The suspension electromagnet current ringing generated by the maglev chopper will increase the switching loss, cause electromagnetic interference (EMI), and even affect the suspension control. Studying the suspension electromagnet current ringing’s generation mechanism is helpful to find its suppression measures. An equivalent circuit model of suspension electromagnet is proposed in view of the current ringing characteristics. Firstly, the general form of the suspension electromagnet’s impedance function is derived by the driving-point function method. Then, based on the suspension electromagnet current’s unit-step response characteristics, the simplest expression of the impedance function and the corresponding equivalent circuit model are determined. Next, the influences of different circuit parameters on current ringing characteristics are analyzed by discriminant and simulation methods. Finally, with the same suspension electromagnet, the simulation and experimental waveforms of the current ringing are compared. The results show that for the specified parameters, the current ripple amplitude, ringing peak value, and ringing frequency of the suspension electromagnet obtained from the experiment are 9.7%, 20%, and 11% lower than the simulation results, respectively. In addition, the simulated current ringing attenuation time is about 1 μs, which is close to the experimental results. The simulation and experimental results of the suspension electromagnet current ringing are in good agreement in terms of the amplitude, frequency, and attenuation characteristics, validating the proposed circuit model.
[1] |
SUN Y G, XU J Q, LIN G B, et al. RBF neural network-based supervisor control for maglev vehicles on an elastic track with network time delay[J]. IEEE Transactions on Industrial Informatics, 2022, 18(1): 509-519. doi: 10.1109/TII.2020.3032235
|
[2] |
WANG P, LONG Z Q, XU Y S. Component-level fault detection for suspension system of maglev trains based on autocorrelation length and stable kernel representation[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 7594-7604. doi: 10.1109/TVT.2021.3096732
|
[3] |
WANG J J, CHUNG H S H, LI R T H. Characterization and experimental assessment of the effects of parasitic elements on the MOSFET switching performance[J]. IEEE Transactions on Power Electronics, 2013, 28(1): 573-590. doi: 10.1109/TPEL.2012.2195332
|
[4] |
GAITO A, SCOLLO R, PANEBIANCO G, et al. Impact of the source-path parasitic inductance on the MOSFET commutations[C]//2012 IEEE Energy Conversion Congress and Exposition. Raleigh: IEEE, 2012: 1367-1373.
|
[5] |
BI C, LU R B, LI H. Prediction of electromagnetic interference noise in SiC MOSFET module[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2019, 66(5): 853-857. doi: 10.1109/TCSII.2019.2908971
|
[6] |
SUN Y G, XU J Q, QIANG H Y, et al. Adaptive neural-fuzzy robust position control scheme for maglev train systems with experimental verification[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8589-8599. doi: 10.1109/TIE.2019.2891409
|
[7] |
NI F, MU S Y, KANG J S, et al. Robust controller design for maglev suspension systems based on improved suspension force model[J]. IEEE Transactions on Transportation Electrification, 2021, 7(3): 1765-1779. doi: 10.1109/TTE.2021.3058137
|
[8] |
蒋祥宇,王昊文,王雪琪,等. 不对称三电平悬浮斩波器[J]. 电力电子技术,2020,54(6): 132-135.
JIANG Xiangyu, WANG Haowen, WANG Xueqi, et al. Asymmetric three-level suspension chopper[J]. Power Electronics, 2020, 54(6): 132-135.
|
[9] |
DING J F, YANG X, LONG Z Q, et al. Three-dimensional numerical analysis and optimization of electromagnetic suspension system for 200 km/h maglev train considering eddy current effect[J]. IEEE Access, 2018, 6: 61547-61555. doi: 10.1109/ACCESS.2018.2876599
|
[10] |
LIU T J, NING R T, WONG T T Y, et al. Modeling and analysis of SiC MOSFET switching oscillations[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(3): 747-756.
|
[11] |
LIU T J, WONG T T Y, SHEN Z J. A survey on switching oscillations in power converters[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 893-908. doi: 10.1109/JESTPE.2019.2897764
|
[12] |
周庭阳, 张红岩. 电网络理论[M]. 杭州: 浙江大学出版社, 1997.
|
[13] |
范盛金. 一元三次方程的新求根公式与新判别式[J]. 海南师范学院学报(自然科学版),1989,2(2): 91-98.
FAN Shengjin. A new extracting formula and a new distinguishing means on the one variable cubic equation[J]. Journal of Hainan Normal University (Natural Science), 1989, 2(2): 91-98.
|
[14] |
JOSIFOVIĆ I, POPOVIĆ-GERBER J, FERREIRA J A. Improving SiC JFET switching behavior under influence of circuit parasitics[J]. IEEE Transactions on Power Electronics, 2012, 27(8): 3843-3854. doi: 10.1109/TPEL.2012.2185951
|
[15] |
SAITO K, MIYOSHI T, KAWASE D, et al. Simplified model analysis of self-excited oscillation and its suppression in a high-voltage common package for Si-IGBT and SiC-MOS[J]. IEEE Transactions on Electron Devices, 2018, 65(3): 1063-1071. doi: 10.1109/TED.2018.2796314
|
[1] | LUO Cheng, TANG Hao, WAN Guohao, WANG Ying, LI Songqi, LUO Jun. Acceleration Feedback Control of Bilateral Permanent Magnet and Electromagnetic Hybrid Electrodynamic Suspension[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 1024-1031. doi: 10.3969/j.issn.0258-2724.20240551 |
[2] | JIANG Qilong, YAO Weifeng, ZHANG Ye. Fault Diagnosis of Suspended Electromagnet Based on Current Change Rate Increment[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 1042-1049. doi: 10.3969/j.issn.0258-2724.20250067 |
[3] | SHEN Lu, ZHANG Liwei, XIU Sanmu, ZHANG Menglei, YANG Changqing, LYV Shangyang. Calculation Method of Magnetic Force of Hybrid Electromagnets Based on Nonlinear Inductance[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 786-794. doi: 10.3969/j.issn.0258-2724.20230551 |
[4] | WANG Ying, LIU Fanglin, LIU Shijie, LUO Cheng, WU Qian. Influence of Speed on Levitation Force of Medium−Low-Speed Maglev Train[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 792-798. doi: 10.3969/j.issn.0258-2724.20210913 |
[5] | HU Yongpan, ZENG Jiewei, WANG Zhiqiang, LONG Zhiqiang. Performance Optimization of Ultra-High Speed Permanent Magnet Electrodynamic Suspension System[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 773-782. doi: 10.3969/j.issn.0258-2724.20220856 |
[6] | FU Shanqiang, WU Donghua, HAN Weitao, ZHOU Ying. Modeling and Analysis of High-Speed Maglev Electromagnets Based on Nonlinear Materials[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 879-885. doi: 10.3969/j.issn.0258-2724.20220741 |
[7] | LIU Qinghui, SHAN Lei, MA Weihua, LU Xiangyu, LUO Shihui. Electromagnetic Force Analysis of Medium−Low-Speed Maglev Considering Remanence[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 863-869, 895. doi: 10.3969/j.issn.0258-2724.20220281 |
[8] | LUO Cheng, ZHANG Kunlun, WANG Ying. Stability Control of Electrodynamic Suspension with Permanent Magnet and Electromagnet Hybrid Halbach Array[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 574-581. doi: 10.3969/j.issn.0258-2724.20210868 |
[9] | ZHANG Baoan, YU Dalian, LI Haitao, LIANG Xin, HUANG Chao. Influence of Flexibility Characteristics of Levitation Chassis on Curve Negotiation Performance of High-Speed Maglev Vehicle[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 475-482. doi: 10.3969/j.issn.0258-2724.20210635 |
[10] | LI Songqi, LUO Cheng, ZHANG Kunlun. Correction of Magnetic Force of Hybrid Electromagnet Based on Magnetic Flux Leakage Compensation[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 604-609. doi: 10.3969/j.issn.0258-2724.20210843 |
[11] | SUN Yougang, XU Junqi, HE Zhenyu, LI Fengxing, CHEN Chen, LIN Guobin. Sliding Mode Cooperative Control of Multi-Electromagnet Suspension System Based on Error Cross Coupling[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 558-565. doi: 10.3969/j.issn.0258-2724.20210924 |
[12] | HUANG Cuicui, LI Xiaolong, YANG Yang, LONG Zhiqiang. Mechanical-Electromagnetic Suspension Compound Vibration Isolation Control Based on Active Disturbance Rejection Technology[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 582-587, 617. doi: 10.3969/j.issn.0258-2724.20210850 |
[13] | JIANG Qilong, LIANG Da, YAN Feng. Application of Digital One-Cycle Control for Current in Electromagnetic Suspension System[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 1-8, 22. doi: 10.3969/j.issn.0258-2724.20170771 |
[14] | TIAN Mingxing, FU Pengyu, LI Ninghao. Magnetically Integrated Structure for Transformer-Type Controllable Reactors: Magnetic Circuit and Circuit Analysis[J]. Journal of Southwest Jiaotong University, 2017, 30(4): 774-781. doi: 10.3969/j.issn.0258-2724.2017.04.016 |
[15] | LI Songqi, ZHANG Kunlun. Self-excited Vibration of Single-Magnet Suspension System: Stability Analysis and Inhibition[J]. Journal of Southwest Jiaotong University, 2015, 28(3): 410-416. doi: 10.3969/j.issn.0258-2724.2015.03.004 |
[16] | ZHAO Chun-fa, ZHAI Wan-min. Dynamic Characteristics of Electromagnetic Levitation Systems[J]. Journal of Southwest Jiaotong University, 2004, 17(4): 464-468. |
[17] | Wu Wentao, LiJing Qin Jun, . Analysis of Transient Electromagnetic Scattering for Railway Ballast[J]. Journal of Southwest Jiaotong University, 1999, 12(1): 42-46. |
[18] | Liu Shangju, Yan Ju, Chen Qiu. Study of Controlling of an Electromagnet and Permanent Magnet Suspension Isolation System[J]. Journal of Southwest Jiaotong University, 1999, 12(3): 279-283. |