• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
WU Donghua, FENG Chengcheng, YU Jin. Contactless Power Supply Technology for Maglev Trains[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 522-530. doi: 10.3969/j.issn.0258-2724.20210893
Citation: ZHANG Baoan, YU Dalian, LI Haitao, LIANG Xin, HUANG Chao. Influence of Flexibility Characteristics of Levitation Chassis on Curve Negotiation Performance of High-Speed Maglev Vehicle[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 475-482. doi: 10.3969/j.issn.0258-2724.20210635

Influence of Flexibility Characteristics of Levitation Chassis on Curve Negotiation Performance of High-Speed Maglev Vehicle

doi: 10.3969/j.issn.0258-2724.20210635
  • Received Date: 09 Aug 2021
  • Rev Recd Date: 11 Jan 2022
  • Publish Date: 10 Mar 2022
  • In order to investigate the small curve negotiation performance of high-speed maglev trains, the flexible vibration of the levitation chassis is explored, and the finite element model of levitation chassis is established to calculate its elastic modes; then the dynamics model of the high-speed maglev vehicle is built. According to the track conditions, speed curve and fitted track irregularities from Tongji University’s maglev test line, the influence of flexible vibration of levitation chassis is analyzed on the gap and electromagnetic force of guidance and levitation electromagnet. Meanwhile, a dynamics model of a rigid levitation chassis is built for comparison purpose. The results show that the dynamic performance of electromagnet is greatly affected by flexible vibration of the levitation chassis when the negotiating curve has a smaller radius of 400 m. The difference of the guidance force between the two models is about 12.5 kN, while the difference of the levitation force is 6.0 kN or so. The comparison with the simulation demonstrates that the results from the model of the levitation chassis flexibility is more close to the test results. The main frequencies of the vertical and lateral levitation chassis vibration are 10.4 Hz and 13.2 Hz respectively, which are similar to modal frequencies of relative pitching and anti-phase yawing between the front and rear levitation frame. The flexibility of levitation chassis should be taken into account in the key issues of high-speed maglev trains, such as control parameter optimization, suspension parameter optimization, and running stability.

     

  • 传统的电能传输方式是通过金属导线,在日常工作生活中,裸露的导线在一定条件下会产生电火花,严重时会烧蚀直接接触的一些元器件,在一些插拔接口位置比较容易受到外界的污染物、水等影响发生爆炸等危险. 在经济科技快速发展的当今时代,人们对生活质量安全便捷的要求也逐渐提高,从办公仪器到家居电器再到交通出行,都离不开电气化,因此研究使用新型的供电技术来消除滑动或滚动接触供电中会产生的电火花,减少磨损损耗[1].

    随着日常出行工具逐渐电气化,如电动汽车、电气化铁路等,轨道交通领域的传统电能传输方式带来的不便与危害也逐渐增加,例如:列车的弓网供电中容易出现接触网断线、受电弓刮弓,另外在天气恶劣时还会出现雷击断电等现象[2]. 非接触供电,顾名思义其供电方式可以不通过直接物理接触进行供电,从而避免了传统供电带来的弊端,接触式供电技术的研究为这些问题的解决提供了新思路、新方法[3].

    早在1976年美国学者就能使用微波的方式在1.54 km距离下进行电能传输[4],当时非接触供电系统的功率可达30 kW. 加州大学伯克利分校PATH研究小组在1992年成功研制出了供电效率约为60%、功率可达60 kW的试验样车[5]. 在21世纪初,庞巴迪公司的Primove提出了一种针对有轨电车非接触供电系统IPS (inductive power supply)的解决方案[6],在德国的包岑和奥格斯堡建设了基于PPIMOVE WPT技术的轻轨电车示范线. 2014年,KAIST公司更是将WPT系统的效率提升至82.7%,传输功率可达1 MW,空气的间隙为5 cm[7],为非接触供电系统在高速铁路供电领域的应用迈出了重要的一步.

    我国的非接触供电技术研究起步较晚,但是最近几年发展较快,电工研究所基于感应耦合原理,成功研制出非接触供电实验装置[8]. 重庆大学孙跃教授的研究团队对非接触感应电能传输进行了进一步研究,研究了非接触供电系统的拾取装置的方向性、系统的输出电流和电压的控制,搭建了系统模型,还研究了控制频率的稳定性,在这些领域都取得了一定的成果,并完成了采用轨道供电非接触电能传输装置的实验样机[9]. 西南交通大学在非接触供电系统的基础科学和工程应用上进行了探索和研究,主要内容有级联型大功率谐振逆变器在非接触供电系统中的应用[10]、非接触供电系统的动态调谐方法、电磁耦合结构设计方法[11],另外还研究了非接触供电系统在多参数扰动下的控制问题,最终形成了初步的一套应用在轨道交通领域的非接触供电技术[12],目前已经做出了试验样机.

    非接触供电系统从20世纪发展至今,主要形成了以下3种供电方式:辐射磁共振耦合方式、基于分离变压器的电磁感应耦合方式、基于微波或激光的辐射式传输. 辐射式非接触供电系统传输的距离较远,功率适中,限制其发展的传输效率较低,另外还有电磁辐射的危害. 电场耦合式的非接触供电系统由发射端和接收端的装置组成,它们之间形成电容器进行电能传输,其受到环境的影响较小[13],功率等级也适用于轨道交通领域.

    高速磁悬浮作为地面最快的交通工具,近年来也进入了研究热潮,中车四方股份已经研制成功高速磁浮列车样车. 当高速磁浮列车速度低于100 km/h时,车载自发电系统产生的电能不足以供应列车车载供电需求,特别是在站停、维护及调试状态,需要使用其他独立的供电方式. 目前主要有车载电池供电、动力轨供电和非接触供电3种方式. 但是,当采用车载电池供电时,车载电池占用较大的空间,并且增加了车体重量,而磁浮车对车体重量是严格控制的,同时车载电池的使用寿命和维护也会增加运营成本. 当采用动力轨供电时,结合车辆中的受流器可以实现不受速度限制,并具有足够功率的能量传输,然而这种常规的接触供电方式在行驶过程中因受流器的开孔会产生显著的噪声,并且在运行过程中存在不可避免的磨损,这些磨损除了会增加维修成本外,同样也会引发异常噪声. 作为一种新型的供电方式——非接触供电技术,可以有效解决上述相关问题. 本文提出的发射端多匝线圈且无磁芯、拾取端类似双U型耦合磁路结构的非接触供电系统,能提高耦合系数、减少磁通泄露,与Tr09相比:发射端多匝,磁密强且分布更加平坦,可获得较高效率,有效抑制间隙变化引起的感应电压波动.

    根据磁浮列车的供电需求,结合磁耦合式非接触供电的特性,提出了一种发射端无磁芯、拾取端类似双U型耦合磁路结构的非接触供电系统,如图1所示.

    图  1  磁浮样车供电结构
    Figure  1.  Power supply structure of maglev prototype

    磁浮列车IPS系统由地面和车载子系统构成,地面子系统将输入的工频交流电(或直流电)转换为高频电流恒定电源,驱动发射电缆产生交变磁场;车载拾取装置通过磁场耦合将场能转换为电能,完成非接触式电能传输. 地面子系统包含以下设备:逆变电源及其补偿装置、发射电缆及其安装支架、补偿电容、监控及诊断系统. 车载子系统由拾取装置、补偿电容装置、高频整流器组成. 磁浮列车IPS系统结构如图2所示.

    针对轨道交通列车功率需求大、供电可靠性要求高、空间狭窄且多导磁、导电材质特点,开展了大功率高频逆变电源控制、电能发射/接收磁路与场路耦合系统设计与优化技术研究,研制了磁浮样车150 kW非接触供电系统,完成现场应用调试与验证.

    根据高速磁浮列车供电需求,通过理论计算确定各设备主要参数,完成IPS系统设计方案,包括:IPS系统工作频率及传输间隙、拾取装置与地面发射系统耦合此路物理尺寸及两者间互感、地面及车载补偿装置参数、利兹线缆载流量及尺寸、逆变电源、DC/DC及监控系统相关功能需求及实现方式. 通过耦合磁路及电气性能仿真初步验证一种发射端多匝线圈且无磁芯、拾取端类似双U型耦合磁路结构设计方案的可行性. 整个IPS系统采用的是一个发射-两个拾取的方案. 当发射端采用不同补偿装置的结构,其对比如表1所示.

    图  2  IPS系统结构示意
    Figure  2.  Structure schematic of IPS system

    通过表1拓扑结构中的比较可以看到:LCL回路有更低的电压和电流应力,且能在空载时运行,保证系统安全,故选择LCL电路拓扑. 对比LCL-S (副边串联)和LCL-P (副边并联)两种拓补结构. 当副边为串联结构时,功率等级与负载阻值成正比,即负载阻值越大,系统的传输功率越大;当接收端为并联结构时,功率等级与负载阻值成反比,随着负载阻值增加,系统传输功率反而减小. LCL-S适合于大功率的能量传输场合,LCL-P结构适合能量小的场合. 因为LCL-P结构不满足功率需求,所以选择副边串联结构,即LCL-S拓扑结构.

    表  1  不同补偿拓扑结构对比
    Table  1.  Comparison of different compensation topologies
    项目串联结构并联结构LCL结构
    电源电压电流电压
    输出矩形电压、正弦电流矩形电流、正弦电压矩形电压、正弦电流
    逆变器承受全部谐振电流承受部分谐振电流受部分谐振电流
    空载时谐振电流很大谐振电压很大力谐振电流较小
    承受应力只需承受输入电压大小应力需承受输入电流大小应力只需承受输入电压大小应力
    下载: 导出CSV 
    | 显示表格

    利用Maxwell软件对多种耦合磁路进行3D仿真分析,快速确定耦合磁路最优设计方案——发射端无磁芯,拾取侧类似双U型结构,然后开展三维电磁仿真,得到满足传输功率及安装空间约束的拾取装置与地面发射线圈间耦合机构物理结构尺寸及电气性能参数.

    初级线圈采用三匝线缆时,分析其对初次级线圈互感以及初级线圈间互感的影响;初级线圈采取上述不同布置方式时,分析其在次级线圈平面中心位置磁通密度的分布情况.

    仿真模型如图3所示.

    图  3  仿真模型示意
    Figure  3.  Illustration of simulation model

    互感分析结果如表2所示.

    图4(a)、(b)和表2中结果可知,发射线圈采用三匝结构,发射端无磁芯,拾取侧类似双U型结构发射/拾取间耦合磁场均匀、漏磁通较少,改善了发射与拾取间耦合效果. 发射端多匝,磁密强且分布更加平坦,耦合性更好.

    表  2  互感计算结果
    Table  2.  Calculation results of mutual inductance
    名 称符号值/μH
    发射端线圈 A 与拾取端
    线圈 2 之间的互电感
    MA,2 14.53
    发射端线圈 B 与拾取端
    线圈 2 之间的互电感
    MB,2 14.31
    为发射端线圈 C 与拾取端
    线圈 2 之间的互电感
    MC,2 13.05
    发射线圈 A、B 间互电感 MA,B 1.73
    发射线圈 A、C 间互电感 MA,C 1.19
    发射线圈 B、C 间互电感 MB,C 1.57
    下载: 导出CSV 
    | 显示表格

    利用Matlab软件建立IPS系统电气仿真模型,验证提出的发射端多扎线圈拾取端无磁芯,拾取端类似双U型结构的合理与正确性,对IPS系统传输功率、输出电压、电流、补充电容等参数进行优化,获得一组满足磁浮列车车载供电需求的IPS系统方案拟参数. 为了补偿线圈的无功功率,提高传输效率偿装置通过电容补偿发射电缆产生的无功功率,抑制发射电缆产生过高的电压. 补偿电容的形式分为发射端并联补偿电容,串联补偿电容和接收端串联补偿电容. 拾取侧各组电容均由0.10 μF和0.24 μF的电容组合而成. 发射供电方案,每一供电单元供电距离约12.5 m,该供电单元内发射电缆长约12.5 m × 2 = 25.0 m,每一供电单元设置一组补偿电容装置,补偿装置设置于变流器旁边.

    根据耦合磁路仿真分析的结果得到电感的相关参数,结合电路设计进行电路仿真. 改变IPS系统工作频率、发射电流、负载电阻时,分析系统的工作稳定性,其中一种工况为系统频率为20 kHz,原边电流为197.5 A、互感10.20 μH、自感3.12 μH以及附在阻值为38 Ω时,计算出拾取端的功率及谐振电容耐压值等具体见表3.

    图  4  磁通仿真结果
    Figure  4.  Magnetic flux simulation results
    表  3  工况1主要电气参数
    Table  3.  Main electrical parameters for operating condition 1
    拾取电容电压/V发射线缆电压/V发射线圈电流/A负载阻值/Ω负载电压/V负载电流/A负载功率/kW
    2130.0684.9197.538441.311.65.1
    下载: 导出CSV 
    | 显示表格

    通过图5~7电气仿真可知:非接触供电系统新结构动态仿真逆变器输出电压电流、拾取装置输出电压电流、负载电流、负载电压波形良好,系统稳定. 拾取端电压、电流、功率均满足设计要求.

    根据技术方案以及提出的发射端无磁芯,拾取侧类似双U型结构,开发拾取装置、地面发生单元等主要子系统产品实物如图8~9所示.

    图  5  逆变器输出电压电流波形
    Figure  5.  Output voltage and current waveform of inverter
    图  6  拾取装置输出电压电流波形
    Figure  6.  Output voltage and current waveform of pickup device
    图  7  负载电压波形
    Figure  7.  Load voltage waveform
    图  8  主要子系统产品开发——拾取装置
    Figure  8.  Main subsystem product development— pickup device
    图  9  主要子系统产品开发——地面发射单元
    Figure  9.  Main subsystem product development— transmission unit on ground

    搭建地面试验验证平台,开展主要子系统部件的功能、型式试验验证及系统验证. 在地面试验验证、方案优化基础上完成系统各部件的生产,开展系统联调联试.

    针对所开发的磁浮样车150 kW非接触供电系统,进行了磁浮样车静置、悬浮、动态运行状态下IPS调试和性能测试. IPS单组拾取装置接收功率超过5.0 kW、持续输出总功率最大128.7 kW高于预期的109.0 kW(发射/拾取未对中,根据设计及测试结果,功率要低27%). 总的输出功率如图10所示.

    图  10  车载HS总接收输出功率
    Figure  10.  Total received output power of on-board HS

    根据测试结果折算,整个IPS系统传输功率约176.0 kW. 通过试验数据(见表4)可以说明:发射端多匝线圈且无磁芯,拾取侧类似双U型结构具有较好的耦合性,传输效率也较高. 表4中,FV表示逆变电源(frequency inverter).

    表  4  拾取装置输出电压及电流
    Table  4.  Output voltage and current of pickup device
    发射单元测试位置开路电压/V负载电压/V负载电流/A拾取功率/kW
    第 1 单元 靠近 FV 353.9 344.4 18.3 6.303
    中间位置 345.4 333.5 17.9 5.970
    远离 FV 352.1 337.1 18.3 6.169
    第 2 单元 靠近 FV 348.7 338.9 18.1 6.134
    中间位置 345.4 328.9 17.8 5.901
    远离 FV 355.6 349.0 18.4 6.422
    下载: 导出CSV 
    | 显示表格

    表4中可以得出结论:拾取装置输出电压和电流满足技术要求. IPS的系统效率(DC-DC)为所有拾取装置接收功率之和除以8个单元变流器的有功功率之和,根据上述内容和测试数据可得DC-DC效率为92.4%.

    IPS发射轨道长约50 m,分为8个单元,测试过程中,逐一选择各个供电单元进行磁通密度,测点位置按照EN50500设置. 测试结果表明:所有8个发射单元发射电缆、拾取装置等关键设备区域磁通密度满足EN50500标准要求,部分结果如下:

    1) 发射线圈区域

    发射线圈左端(FV区域)测点数据:水平距离0.3 m,高度0.9 m测点,测试结果如图11. 由图可知:此区域在空载和加载两种条件下的磁通密度测试结果基本一致,且在20.0 kHz频率处最大磁通密度达到2.35 μT,远小于标准限值6.25 μT. 说明磁通密度主要取决于发射线圈内的电流大小,当发射线圈内电流始终保持不变时,无论空载和加载,周围区域内的磁通密度不变.

    2) 配电柜区域

    水平距离0.3 m,高度0.9 m测点,测试结果如图12. 由图可知:此区域在空载和加载两种条件下的磁通密度测试结果基本一致,且在20.0 kHz频率处最大磁通密度达到0.07 μT,远小于标准限值6.25 μT.

    图  11  发射线圈左端(FV区域)磁通密度
    Figure  11.  Magnetic flux density at left end of transmitting coil (FV region)
    图  12  配电柜区域磁通密度
    Figure  12.  Magnetic flux density in distribution cabinet area

    3) 站台区域

    水平距离0.3 m、高度0.9 m测点,测试结果如图13. 由图可知:此区域在空载和加载两种条件下的磁通密度测试结果基本一致,且在20.0 kHz频率处最大磁通密度达到0.92 μT,远小于标准限值6.25 μT. 说明磁通密度主要取决于发射线圈内的电流大小,当发射线圈内电流始终保持不变时,无论空载和加载,周围区域内的磁通密度不变.

    图  13  站台区域磁通密度
    Figure  13.  Magnetic flux density in platform area

    因IPS系统工作在20.0 kHz,且通过上述的测试数据图可看出:其最接近限值的频率为20.0 kHz. 发射端无磁芯,拾取侧类似双U型结构磁通泄露少耦合性强,方案可行.

    本项目通过大功率磁场感应非接触供电系统关键技术研究,研制完成一套供电功率超过150.0 kW的磁场耦合式非接触供电系统,提出的发射端多匝线圈无磁芯、拾取端类似双U型耦合磁路结构可以应用于非接触供电系统,通过列车相关系统调试及功能测试,最大传输功率达176.0 kW、DC-DC效率92.4%,已应用于磁浮列车样车.

    基于磁浮列车车载供电需求,继续开展IPS系统更高功率密度拾取装置研制以及进一步提高能效比、降低系统成本技术和方法,拓展IPS技术在轨道交通领域应用.

  • [1]
    CUI Y X, SHEN G, WANG H. Maglev vehicle-guideway coupling vibration test rig based on the similarity theory[J]. Journal of Vibration and Control, 2016, 22(1): 286-295. doi: 10.1177/1077546314521446
    [2]
    武建军,沈飞,史筱红. 磁悬浮控制系统的稳定性及Hopf分岔的研究[J]. 振动与冲击,2010,29(3): 193-196, 214. doi: 10.3969/j.issn.1000-3835.2010.03.047

    WU Jianjun, SHEN Fei, SHI Xiaohong. Stability and Hopf bifurcation of the maglev system[J]. Journal of Vibration and Shock, 2010, 29(3): 193-196, 214. doi: 10.3969/j.issn.1000-3835.2010.03.047
    [3]
    梁鑫. 磁浮列车车轨耦合振动分析及试验研究[D]. 成都: 西南交通大学, 2015.
    [4]
    WANG K R, LUO S H, MA W H, et al. Dynamic characteristics analysis for a new-type maglev vehicle[J]. Advances in Mechanical Engineering, 2017, 9(12): 168781401774541.1-168781401774541.10.
    [5]
    汪科任,罗世辉,张继业. 磁悬浮控制器设计及静悬浮稳定性分析[J]. 西南交通大学学报,2017,52(1): 118-126. doi: 10.3969/j.issn.0258-2724.2017.01.017

    WANG Keren, LUO Shihui, ZHANG Jiye. Design of magnetic levitation controller and static stability analysis[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 118-126. doi: 10.3969/j.issn.0258-2724.2017.01.017
    [6]
    汪科任,罗世辉,宗凌潇,等. 新型磁浮车动力学仿真分析[J]. 振动与冲击,2017,36(20): 23-29.

    WANG Keren, LUO Shihui, ZONG Lingxiao, et al. A dynamic simulation analysis of new maglev trains[J]. Journal of Vibration and Shock, 2017, 36(20): 23-29.
    [7]
    宗凌潇. 时速140km新型中低速磁浮列车走行机构研究分析[D]. 成都: 西南交通大学, 2016 .
    [8]
    赵春霞. EMS型高速磁浮列车导向动力学研究[D]. 长沙: 国防科学技术大学, 2014.
    [9]
    贺光. EMS型中速磁浮列车动力学建模与导向能力研究[D]. 长沙: 国防科学技术大学, 2016.
    [10]
    谢钦. 新型中低速磁浮车辆空气弹簧应用研究[D]. 成都: 西南交通大学, 2017.
    [11]
    ZHANG M, LUO S H, GAO C, et al. Research on the mechanism of a newly developed levitation frame with mid-set air spring[J]. Vehicle System Dynamics, 2018, 56(12): 1797-1816. doi: 10.1080/00423114.2018.1435892
    [12]
    ZHANG M, GAO C, MA W H. Effect of different connection modes of electromagnets on the performance of levitation control[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(8): 2111-2125. doi: 10.1177/0954409718762171
    [13]
    闫一凡,齐洪峰,罗林涛,等. 基于UM的高速磁浮车辆刚柔耦合建模及振动传递规律研究[J]. 铁道机车车辆,2019,39(5): 59-64, 126.

    YAN Yifan, QI Hongfeng, LUO Lintao, et al. Rigid-flexible coupled modeling of high-speed maglev vehicle and vibration transmitting research base on UM[J]. Railway Locomotive & Car, 2019, 39(5): 59-64, 126.
    [14]
    赵春发,翟婉明,叶学艳. 高速磁浮车辆弹性悬浮架动力学建模与仿真[J]. 系统仿真学报,2008,20(20): 5718-5721.

    ZHAO Chunfa, ZHAI Wanming, YE Xueyan. Dynamic modeling and simulation of high-speed maglev vehicle and its elastic levitation chassis[J]. Journal of System Simulation, 2008, 20(20): 5718-5721.
    [15]
    叶学艳. 磁浮车辆系统动力学建模与仿真分析[D]. 成都: 西南交通大学, 2007.
    [16]
    DELLNITZ M, DIGNATH F, FLAßKAMP K, et al. Modelling and analysis of the nonlinear dynamics of the transrapid and its guideway[C]//Progress in Industrial Mathematics at ECMI 2010. Berlin: Springer, 2012: 113-123.
    [17]
    DING S S, SUN J J, HAN W T, et al. Modeling and analysis of a novel guidance magnet for high-speed maglev train[J]. IEEE Access, 2019, 7: 133324-133334. doi: 10.1109/ACCESS.2019.2940728
    [18]
    陈志贤. 高速常导电磁悬浮车辆系统动力学优化研究[D]. 成都: 西南交通大学, 2020.
    [19]
    王军, 马云双. 中国高速动车组发展模式探索与实践[M]. 北京: 中国铁道出版社有限公司, 2020: 314-315.
    [20]
    梁鑫,丁叁叁,黄超,等. 基于正态分布叠加原理的高速磁浮线路不平顺预测方法[J]. 机车电传动,2020(6): 20-24.

    LIANG Xin, DING Sansan, HUANG Chao, et al. Prediction method of irregularity of high-speed maglev track based on normal distribution superposition principle[J]. Electric Drive for Locomotives, 2020(6): 20-24.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article views(361) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return