• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
JIANG Qilong, LIANG Da, YAN Feng. Application of Digital One-Cycle Control for Current in Electromagnetic Suspension System[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 1-8, 22. doi: 10.3969/j.issn.0258-2724.20170771
Citation: JIANG Qilong, LIANG Da, YAN Feng. Application of Digital One-Cycle Control for Current in Electromagnetic Suspension System[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 1-8, 22. doi: 10.3969/j.issn.0258-2724.20170771

Application of Digital One-Cycle Control for Current in Electromagnetic Suspension System

doi: 10.3969/j.issn.0258-2724.20170771
  • Received Date: 03 Nov 2017
  • Rev Recd Date: 16 May 2018
  • Available Online: 30 May 2018
  • Publish Date: 01 Feb 2019
  • In an electromagnetic suspension system (EMS) with cascade control, the response speed and accuracy of the current loop play a vital role in the overall suspension control. A current controller was designed for digital one-cycle control (D-OCC) based on TMS320F28335 for the suspension system, in order to improve the response speed of the current loop and reduce the following error. Taking a chopper circuit as the research object, the D-OCC’s mathematical model was established and the control algorithm of rated suspension point was derived in detail. The algorithm was validated through Simulink, and the current loop controlled by D-OCC was incorporated into the actual EMS. Experimental results show that the conventional PID control has a certain overshoot at the wave’s rising and falling edges when a square wave signal with frequency of 5 Hz and amplitude of 3 A is followed. Moreover, there is a following error of not less than 20 mA after the stabilization. However, there is no overshoot in the adjustment process and no following error after stabilization, when following the same wave with the method of D-OCC. This means that the D-OCC algorithm can follow the instruction current quickly and accurately. The floating process of the suspension system using the D-OCC current loop requires an adjustment time of about 0.4 s, and the system can overcome the 50% load disturbance and the 1.5 mm air gap disturbance; this shows that the method can achieve the system stable levitation and has strong robust performance.

     

  • 朱开锋,董金文,雷学国,等. 电流最小方差控制在电磁吸力悬浮系统中的应用[J]. 电气开关,2010,48(1): 58-60 doi: 10.3969/j.issn.1004-289X.2010.01.020

    ZHU Kaifeng, DONG Jinwen, LEI Xueguo, et al. Application of the current minimum variance control in EMS system[J]. Electric Switchgear, 2010, 48(1): 58-60 doi: 10.3969/j.issn.1004-289X.2010.01.020
    张德魁,赵雷,赵鸿宾. 电流响应速度及力响应速度对磁轴承系统性能的影响[J]. 清华大学学报(自然科学版),2001,41(6): 23-26 doi: 10.3321/j.issn:1000-0054.2001.06.007

    ZHANG Dekui, ZHAO Lei, ZHAO Hongbin. Effect of current response rate and force response rate on performance of magnetic bearing systems[J]. Jourrnal of Tsinghua University (Science and Technology), 2001, 41(6): 23-26 doi: 10.3321/j.issn:1000-0054.2001.06.007
    蒋启龙,胡基士. 磁浮列车斩波器研究[J]. 电力电子技术,1997(2): 60-62

    JIANG Qilong, HU Jishi. Study of the maglev chopper[J]. Power Electronics, 1997(2): 60-62
    李云钢,常文森. 磁浮列车悬浮系统的串级控制[J]. 自动化学报,1999,25(2): 247-251

    LI Yungang, CHANG Wensen. Cascade control of an EMS maglev vehicle’s levitation control system[J]. Acta Automatic Sinica, 1999, 25(2): 247-251
    周媛. 三电平悬浮斩波器性能研究[J]. 电气传动,2011,41(12): 12-15 doi: 10.3969/j.issn.1001-2095.2011.12.003

    ZHOU Yuan. Performance analysis of a maglev chopper based on three-level control[J]. Electric Drive, 2011, 41(12): 12-15 doi: 10.3969/j.issn.1001-2095.2011.12.003
    李云钢,柯朝雄,程虎. 磁浮列车悬浮控制器的电流环分析与优化设计[J]. 国防科技大学学报,2006,28(1): 94-97 doi: 10.3969/j.issn.1001-2486.2006.01.021

    LI Yungang, HE Chaoxiong, CHENG Hu. Analyzing and optimizing design of current-loop in the magnetic levitation controller on maglev vehicle[J]. Journal of National University of Defense Technology, 2006, 28(1): 94-97 doi: 10.3969/j.issn.1001-2486.2006.01.021
    程金路,张承进. 自适应有限拍感应电机电流控制器设计[J]. 控制与决策,2005,20(10): 1097-1102 doi: 10.3321/j.issn:1001-0920.2005.10.003

    CHENG Jinlu, ZHANG Chenjin. Adaptive deadbeat current controller for induction machine drives[J]. Control and Decision, 2005, 20(10): 1097-1102 doi: 10.3321/j.issn:1001-0920.2005.10.003
    张东升,梅雪松,郝晓红,等. 磁悬浮系统的电流控制方法[J]. 西安交通大学学报,2007,41(9): 1096-1100 doi: 10.3321/j.issn:0253-987x.2007.09.021

    ZHANG Dongshen, MEI Xuesong, HAO Xiaohong, et al. Current control method for magnetic suspension system[J]. Journal of Xi’an Jiaotong University, 2007, 41(9): 1096-1100 doi: 10.3321/j.issn:0253-987x.2007.09.021
    SMEDLEY K M, CUK S. One-cycle control of switching converters[J]. IEEE Transactions on Power Electronics, 1995, 10(6): 625-633 doi: 10.1109/63.471281
    万蕴杰,周林,张海,等. 单周控制的发展及其应用[J]. 高电压技术,2007,33(4): 163-169 doi: 10.3969/j.issn.1003-6520.2007.04.040

    WAN YunJie, ZHOU Lin, ZHANG Hai, et al. Development and application of one-cycle control[J]. High Voltage Engineering, 2007, 33(4): 163-169 doi: 10.3969/j.issn.1003-6520.2007.04.040
    韦徵,陈新,陈杰,等. 基于D-OCC的三相PFC整流器输入电流相位滞后及闭环补偿[J]. 中国电机工程学报,2013,33(33): 42-49

    WEI Zheng, CHEN Xin, CHEN Jie, et al. Input current phase lag and closed loop compensation for three-phase PFC rectifiers based on one-cycle control strategy[J]. Proceedings of the CSEE, 2013, 33(33): 42-49
    BARBATI M, CALUISI C, CECATI C. One-cycle controlled active rectifier for full digital implementation[C]//36th Annual Conference on IEEE Industrial Electronics Society. Glendale: [s.n.], 2010: 625-630
    LOCK A S, FERNANDES D A, SILVA E R C, et al. A current based OCC technique implemented by DSP for a three-phase OCC rectifier[C]//40th Annual Conference of the IEEE Industrial Electronics Society. Dallas: IEEE, 2014: 5136-5142
    凌雁波. D-OCC技术的研究和应用[D]. 南京: 南京航空航天大学, 2009
    蒋真. 单相/三相逆变器的D-OCC研究[D]. 南京: 南京航空航天大学, 2011
    刘程子. 适用于高速电机的混合型磁悬浮轴承设计及控制策略的研究[D]. 南京: 南京航空航天大学, 2015
    PETRONE G, VITELLI M, SPAGNULOL G. Digital implementation of one cycle control in back to back converters[C]//IEEE International Symposium on Power Electronics for Distributed Generation Systems. Aalborg: IEEE, 2012: 344-348
    Ul-HAQ A, CECATI C, KHALID H A. FPGA based one-cycle control of multilevel cascaded H-bridge inverter[C]//Fortieth Annual Conference of IEEE Industrial Electronics Society. Dallas: IEEE, 2015: 4628-4634
    BAGAWADE S, JAIN P. Digital implementation of one-cycle controller (OCC) for AC-DC converters[C]// IEEE International Conference on Power Electronics, Drives and Energy Systems. Trivandrum: IEEE, 2017: 1-6
    刘程子,邓智泉,曹鑫,等. 混合型磁悬浮轴承开关功放的单周期数字控制[J]. 中国电机工程学报,2015,35(22): 5899-5907

    LIU Chengzi, DENG Zhiquan, CAO Xin, et al. An one-cycle control digital control strategy for switching power amplifiers in hybrid magnetic levitation bearing systems[J]. Proceedings of the CSEE, 2015, 35(22): 5899-5907
    HAO A, SHE L, LIU H, et al. Research of force feedback controlling on high speed maglev train guidance system[C]//IEEE International Conference on Control and Automation. Guangzhou: IEEE, 2007: 1381-1384
    钟毅. 磁悬浮嵌入式控制系统基础理论和关键技术研究[D]. 武汉: 武汉理工大学, 2007
  • Relative Articles

    [1]GONG Lei, HE Pai, SHI Yong, ZHU Changsheng. Non-Singular Fast Terminal Sliding Mode Rotor Position Control of Active Magnetic Bearings[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240090
    [2]XU Xianze, SONG Mingxing, GONG Yongxing, XU Fengqiu, WANG Dijin, SUI Bowen, GUO Qingquan. Fractional-Order Sliding Mode Control for Maglev Rotary Table Based on Disturbance Compensation[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 766-775. doi: 10.3969/j.issn.0258-2724.20230412
    [3]ZHOU Yang, ZHOU Jin, WANG Yiyu, ZHANG Yue, XU Yuanping. Modeling and Robust Control of Magnetic Bearing-Rotor System Considering Interface Contact[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 755-765. doi: 10.3969/j.issn.0258-2724.20230510
    [4]SONG Chunsheng, YIN Rui, WEI Zihang, WANG Peng. Simulation on Decoupling Control of Maglev Flexible Rotor System[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 761-772. doi: 10.3969/j.issn.0258-2724.20220773
    [5]ZHAO Chuan, SUN Feng, PEI Wenzhe, JIN Junjie, XU Fangchao, ZHANG Xiaoyou. Independent Cascade Control Method for Permanent Magnetic Levitation Platform[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 618-626. doi: 10.3969/j.issn.0258-2724.20210960
    [6]LIANG Da, ZHANG Kunlun, XIAO Song. Equivalent Circuit Model of Suspension Electromagnet with Current Ringing Characteristics[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 588-596. doi: 10.3969/j.issn.0258-2724.20210886
    [7]PENG Bo, TANG Ju, ZHANG Yuanyuan, CAI Xiaoyu, MENG Fanhe. Automatic Traffic State Recognition from Road Videos Based on 3D Convolution Neural Network[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 153-159. doi: 10.3969/j.issn.0258-2724.20191169
    [8]CHEN Weirong, YU Jin, LI Qi, PU Yuchen, YANG Hanqing, HAN Ying. Balanced Current Control Method for Virtual Synchronous Generator in Electro-Hydrogen Multi-Energy Complementary Microgrid[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1323-1331. doi: 10.3969/j.issn.0258-2724.20180860
    [9]HUANG Qunyi, LIANG Dong, HUANG Yanxia, RUI Yi. Numerical Analysis on Seismic Performance of Load Bearing 3D Walls[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 982-988. doi: 10.3969/j.issn.0258-2724.2018.05.015
    [10]GONG Ming, LI Qiang. Design of Inductively Coupled Power Transfer System Based on Dual-Loop Control[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 474-482. doi: 10.3969/j.issn.0258-2724.2018.03.007
    [11]GAO Bo, HAO Changjin, LI Shuaibing, YIN Xiaobing, YU Xiaofeng, WU Guangning. Frequency-Domain Dielectric Spectroscopy Characteristics of Generator Epoxy/Mica Insulation[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 9-15. doi: 10.3969/j.issn.0258-2724.2017.01.002
    [12]LI Qi, YU Shuang, HAN Ying, CHEN Weirong. Active Current Control Method Based on Grid-Connected Proton Exchange Membrane Fuel Cell[J]. Journal of Southwest Jiaotong University, 2017, 30(4): 755-763. doi: 10.3969/j.issn.0258-2724.2017.04.014
    [13]LIU Zhixiang, LI Lun, HAN Zhe, PAN Jungang, DING Yi. Current Following Segmented PID Control of Air Supply System in Heavy-Duty PEMFC System[J]. Journal of Southwest Jiaotong University, 2016, 29(3): 437-445. doi: 10.3969/j.issn.0258-2724.2016.03.004
    [14]GUO Lei, GAO Xiaojie, LI Qunzhan. Decision and Control of Catenary On-Line Anti-icing Current in Autotransformer Power Supply System[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 1045-1051. doi: 10.3969/j.issn.0258-2724.2014.06.016
    [15]HAN Yunxiang, TANG Xinmin, HAN Songchen. Conflict-Free 4D Trajectory Prediction Based on Hybrid System Theory[J]. Journal of Southwest Jiaotong University, 2012, 25(6): 1069-1074. doi: 10.3969/j.issn.0258-2724.2012.06.025
    [16]WANG Chao, GUO Jiuxia, SHEN Zhipeng. Prediction of 4D Trajectory Based on Basic Flight Models[J]. Journal of Southwest Jiaotong University, 2009, 22(2): 295-300.
    [17]ZHOU Fulin, LI Qunzhan, GUO Cheng. Real Time PLL-less Detection Method for Single-Phase Random Harmonic Current[J]. Journal of Southwest Jiaotong University, 2009, 22(3): 360-364.
    [18]WANG Li, ZHANGKun-lun. HybridM agnetic Suspension System Based on Zero Power Control Strategy[J]. Journal of Southwest Jiaotong University, 2005, 18(5): 667-672.
    [19]Liu Shangju, Yan Ju, Chen Qiu. Study of Controlling of an Electromagnet and Permanent Magnet Suspension Isolation System[J]. Journal of Southwest Jiaotong University, 1999, 12(3): 279-283.
  • Cited by

    Periodical cited type(7)

    1. 杨杰,杨星,高涛,胡海林. 电磁悬浮系统的改进线性自抗扰控制方法. 电机与控制学报. 2024(01): 131-141 .
    2. 李至勇,杨杰,周发助,胡海林. 电磁悬浮系统的改进滑模控制方法. 电子测量技术. 2024(04): 87-94 .
    3. 孙超,张昆仑. 基于遗传算法的悬浮电磁铁磁热耦合参数优化. 电气工程学报. 2024(02): 344-352 .
    4. 陈高琪,张昆仑,张慧娴,娄方良. 悬浮斩波器的自抗扰电流跟随控制研究. 电源学报. 2024(S1): 42-49 .
    5. 翟明达,李晓龙,龙志强,窦峰山. 基于Youla参数化的高速磁浮列车悬浮系统控制与优化设计. 同济大学学报(自然科学版). 2023(03): 341-350 .
    6. 邹圣楠,刘畅,邓舒同,刘英,陈鹏荣. 基于混合式磁浮平台的解耦及控制分析. 西南交通大学学报. 2022(03): 540-548 . 本站查看
    7. 徐程程,徐方超,孙凤,张晓友,金俊杰,栾博然. 电火花加工用磁力驱动器的微定位控制. 西南交通大学学报. 2022(03): 610-617 . 本站查看

    Other cited types(9)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-03051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 47.4 %FULLTEXT: 47.4 %META: 48.6 %META: 48.6 %PDF: 4.0 %PDF: 4.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.1 %其他: 5.1 %上海: 0.9 %上海: 0.9 %临汾: 0.5 %临汾: 0.5 %北京: 8.8 %北京: 8.8 %十堰: 0.2 %十堰: 0.2 %南京: 0.2 %南京: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 0.2 %合肥: 0.2 %唐山: 0.5 %唐山: 0.5 %张家口: 2.8 %张家口: 2.8 %德罕: 0.7 %德罕: 0.7 %成都: 1.6 %成都: 1.6 %扬州: 0.5 %扬州: 0.5 %昆明: 0.2 %昆明: 0.2 %杭州: 1.2 %杭州: 1.2 %池州: 0.5 %池州: 0.5 %济南: 0.5 %济南: 0.5 %漯河: 1.2 %漯河: 1.2 %福州: 1.9 %福州: 1.9 %芒廷维尤: 14.6 %芒廷维尤: 14.6 %芝加哥: 0.9 %芝加哥: 0.9 %衢州: 0.5 %衢州: 0.5 %西宁: 54.1 %西宁: 54.1 %西安: 0.7 %西安: 0.7 %贵阳: 0.2 %贵阳: 0.2 %金华: 0.2 %金华: 0.2 %长沙: 0.9 %长沙: 0.9 %鹰潭: 0.2 %鹰潭: 0.2 %其他上海临汾北京十堰南京台州合肥唐山张家口德罕成都扬州昆明杭州池州济南漯河福州芒廷维尤芝加哥衢州西宁西安贵阳金华长沙鹰潭

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article views(538) PDF downloads(20) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return