• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
ZOU Shengnan, LIU Chang, DENG Shutong, LIU Ying, CHEN Pengrong. Decoupling and Control Stability Analysis Based on Hybrid Repulsion Maglev Platform[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 540-548. doi: 10.3969/j.issn.0258-2724.20210750
Citation: ZOU Shengnan, LIU Chang, DENG Shutong, LIU Ying, CHEN Pengrong. Decoupling and Control Stability Analysis Based on Hybrid Repulsion Maglev Platform[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 540-548. doi: 10.3969/j.issn.0258-2724.20210750

Decoupling and Control Stability Analysis Based on Hybrid Repulsion Maglev Platform

doi: 10.3969/j.issn.0258-2724.20210750
  • Received Date: 28 Sep 2021
  • Rev Recd Date: 02 Mar 2022
  • Publish Date: 11 Mar 2022
  • In order to study the multi-degree-of-freedom coupling problem in the magnetic levitation platform system, a design idea of using passive force between permanent magnets to reduce the active control in the vertical direction is proposed, and the structure design of a repulsion maglev platform is given. The stator of the magnetic suspension structure studied is composed of permanent magnet and electromagnetic coils. Its characteristic is that the permanent magnet provides the main suspension force, and the electromagnetic coils provide the horizontal driving force, so as to reduce the number of coils responsible for active suspension, and reduce coil power consumption and heat generation. Firstly, the Laplace equation satisfied by the scalar potential was derived based on the magnetic charge model, the analytical expression of the scalar potential was obtained by using the separation variable method. And the force of the float in the whole magnetic field was accurately calculated. Next, the stable region of passive suspension force between stator and mover permanent magnet was fully studied and discussed, the decoupling of the force in the vertical direction was simplified and ignored, and the mathematical model of the controlled object was established. The digital integrated controller centered on the micro-control unit was developed. The levitation performance of the platform was studied by experiments. The research results show that the hybrid repulsion maglev platform proposed in this paper can realize the stable motion control of the above float within the horizontal range of ± 4 mm of the suspension height of 23 mm, and can realize the stable horizontal motion, and the displacement change of the float in the vertical direction does not exceed 0.2 mm.

     

  • [1]
    翟婉明,赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报,2016,51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001

    ZHAI Wanming, ZHAO Chunfa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001
    [2]
    徐飞,罗世辉,邓自刚. 磁悬浮轨道交通关键技术及全速度域应用研究[J]. 铁道学报,2019,41(3): 40-49. doi: 10.3969/j.issn.1001-8360.2019.03.006

    XU Fei, LUO Shihui, DENG Zigang. Study on key technologies and whole speed range application of maglev rail transport[J]. Journal of the China Railway Society, 2019, 41(3): 40-49. doi: 10.3969/j.issn.1001-8360.2019.03.006
    [3]
    邓自刚,张勇,王博,等. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报,2019,54(5): 1063-1072. doi: 10.3969/j.issn.0258-2724.20180204

    DENG Zigang, ZHANG Yong, WANG Bo, et al. Present situation and prospect of evacuated tube transportation system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1063-1072. doi: 10.3969/j.issn.0258-2724.20180204
    [4]
    潘毅,周盟,郭瑞,等. 基于磁悬浮技术的建筑隔震研究进展[J]. 西南交通大学学报,2019,54(3): 475-482. doi: 10.3969/j.issn.0258-2724.20170413

    PAN Yi, ZHOU Meng, GUO Rui, et al. Research progress on building isolation based on electromagnetic levitation techniques[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 475-482. doi: 10.3969/j.issn.0258-2724.20170413
    [5]
    熊嘉阳,邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报,2021,21(1): 177-198.

    XIONG Jiayang, DENG Zigang. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177-198.
    [6]
    秦新燕,雷金. 磁悬浮定位平台的研究综述[J]. 机床与液压,2012,40(21): 160-166. doi: 10.3969/j.issn.1001-3881.2012.21.043

    QIN Xinyan, LEI Jin. Research review on magnetic levitation positioning stage[J]. Machine Tool & Hydraulics, 2012, 40(21): 160-166. doi: 10.3969/j.issn.1001-3881.2012.21.043
    [7]
    KIM W J, TRUMPER D L. High-precision magnetic levitation stage for photolithography[J]. Precision Engineering, 1998, 22(2): 66-77. doi: 10.1016/S0141-6359(98)00009-9
    [8]
    CHEN M Y, LIN T B, HUNG S K, et al. Design and experiment of a macro—micro planar maglev positioning system[J]. IEEE Transactions on Industrial Electronics, 2012, 59(11): 4128-4139. doi: 10.1109/TIE.2011.2174531
    [9]
    LAHDO M, STROHLA T, KOVALEV S. Magnetically levitated planar positioning systems based on Lorentz forces[C]//2017 11th International Symposium on Linear Drives for Industry Applications (LDIA). Osaka: IEEE, 2017: 1-6.
    [10]
    LAHDO M, STRÖHLA T, KOVALEV S. Design and implementation of an new 6-DoF magnetic levitation positioning system[J]. IEEE Transactions on Magnetics, 2019, 55(12): 1-7.
    [11]
    ZHANG H, KOU B Q, ZHOU Y H. Analysis and design of a novel magnetic levitation gravity compensator with low passive force variation in a large vertical displacement[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 4797-4805. doi: 10.1109/TIE.2019.2924858
    [12]
    SHAKIR H, KIM W J. Nanoscale path planning and motion control with maglev positioners[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(5): 625-633. doi: 10.1109/TMECH.2006.882995
    [13]
    蒋启龙,梁达,阎枫. 数字单周期电流控制在电磁悬浮系统中的应用[J]. 西南交通大学学报,2019,54(1): 1-8,22.

    JIANG Qilong, LIANG Da, YAN Feng. Application of digital one-cycle control for current in electromagnetic suspension system[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 1-8,22.
    [14]
    周振雄,杨建东,曲永印,等. 基于自抗扰控制器的磁浮平台水平推力控制[J]. 机械工程学报,2008,44(9): 193-199,204. doi: 10.3321/j.issn:0577-6686.2008.09.032

    ZHOU Zhenxiong, YANG Jiandong, QU Yongyin, et al. Horizontal thrust control of magnetic suspension platform based on active disturbance rejection controller[J]. Chinese Journal of Mechanical Engineering, 2008, 44(9): 193-199,204. doi: 10.3321/j.issn:0577-6686.2008.09.032
    [15]
    李黎川,丁玉成,卢秉恒. 超精密磁悬浮工作台及其解耦控制[J]. 机械工程学报,2004,40(9): 84-88,94. doi: 10.3321/j.issn:0577-6686.2004.09.018

    LI Lichuan, DING Yucheng, LU Bingheng. High-precision magnetically suspended table and its decoupling control[J]. Chinese Journal of Mechanical Engineering, 2004, 40(9): 84-88,94. doi: 10.3321/j.issn:0577-6686.2004.09.018
    [16]
    张生果,朱煜,尹文生,等. 动圈式磁悬浮工件台线圈阵列实时电流分配法则[J]. 机械工程学报,2011,47(6): 180-185. doi: 10.3901/JME.2011.06.180

    ZHANG Shengguo, ZHU Yu, YIN Wensheng, et al. Coil array real-time commutation law for magnetically levitated stage with moving-coils[J]. Journal of Mechanical Engineering, 2011, 47(6): 180-185. doi: 10.3901/JME.2011.06.180
    [17]
    孙立军,张涛,赵兵. 永磁磁轴承数学模型的研究[J]. 机械工程学报,2005,41(4): 69-74. doi: 10.3321/j.issn:0577-6686.2005.04.014

    SUN Lijun, ZHANG Tao, ZHAO Bing. Study of mathematical model of permanent magnet bearings[J]. Chinese Journal of Mechanical Engineering, 2005, 41(4): 69-74. doi: 10.3321/j.issn:0577-6686.2005.04.014
    [18]
    RAVAUD R, LEMARQUAND G, LEMARQUAND V, et al. Analytical calculation of the magnetic field created by permanent-magnet rings[J]. IEEE Transactions on Magnetics, 2008, 44(8): 1982-1989. doi: 10.1109/TMAG.2008.923096
    [19]
    苟晓凡,杨勇,郑晓静. 矩形永磁体磁场分布的解析表达式[J]. 应用数学和力学,2004,25(3): 271-278. doi: 10.3321/j.issn:1000-0887.2004.03.008

    GOU Xiaofan, YANG Yong, ZHENG Xiaojing. Analytic expression of magnetic field distribution of rectangular permanent magnets[J]. Applied Mathematics and Mechanics, 2004, 25(3): 271-278. doi: 10.3321/j.issn:1000-0887.2004.03.008
    [20]
    TANG W B, XIAO L Y, XIA D, et al. 2-D and 3-D analytical calculation of the magnetic field and levitation force between two halbach permanent magnet arrays[J]. IEEE Transactions on Magnetics, 2021, 57(4): 1-8.
    [21]
    王瑞凯,左洪福,吕萌. 环形磁铁空间磁场的解析计算与仿真[J]. 航空计算技术,2011,41(5): 19-23. doi: 10.3969/j.issn.1671-654X.2011.05.005

    WANG Ruikai, ZUO Hongfu, LYU Meng. Analytical calculation and simulation for magnetic field distribution of ring magnet[J]. Aeronautical Computing Technique, 2011, 41(5): 19-23. doi: 10.3969/j.issn.1671-654X.2011.05.005
    [22]
    吴崇试. 均匀带电圆盘的静电势问题[J]. 大学物理,2000,19(11): 1-4. doi: 10.3969/j.issn.1000-0712.2000.11.001

    WU Chongshi. Electrostatic potential of uniformly charged disc[J]. College Physics, 2000, 19(11): 1-4. doi: 10.3969/j.issn.1000-0712.2000.11.001
    [23]
    ROBERTSON W. Modelling and design of magnetic levitation systems for vibration isolation[D]. Australia: The University of Adelaide , 2013.
    [24]
    VERMA S, KIM W J, GU J. Six-axis nanopositioning device with precision magnetic levitation technology[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(2): 384-391. doi: 10.1109/TMECH.2004.828648
    [25]
    ZHANG C, LU Y H, LIU G C, et al. Research on one-dimensional motion control system and method of a magnetic levitation ball[J]. The Review of Scientific Instruments, 2019, 90(11): 115005.1-115005.9.
  • Relative Articles

    [1]LIU Xin, YUAN Pengyu. Modeling and Simulation of a Novel Heteropolar Radial Hybrid Magnetic Bearing[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230315
    [2]ZHU He, YUAN Ming, GUO Xin. Finite Element Analysis on Layered Mechanical Properties of Carbon Fiber Wires Under Influence of Temperature[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 700-711. doi: 10.3969/j.issn.0258-2724.20210686
    [3]WANG Yao, CHEN Ling, YANG Dexin, XU Limei. Cross Regulation Analysis of I2-Controlled Single-Inductor Dual-Output Buck LED Driver[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1248-1256. doi: 10.3969/j.issn.0258-2724.20220383
    [4]SONG Chunsheng, YIN Rui, WEI Zihang, WANG Peng. Simulation on Decoupling Control of Maglev Flexible Rotor System[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 761-772. doi: 10.3969/j.issn.0258-2724.20220773
    [5]WEI Fanan, LIU Ying. Two-Degree-of-Freedom Maglev Platform for Micro Machining[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1318-1327. doi: 10.3969/j.issn.0258-2724.20220583
    [6]SUN Feng, PEI Wenzhe, JIN Junjie, ZHAO Chuan, XU Fangchao, ZHANG Ming. Floating Control Method for Permanent Magnetic Levitation Platform with Variable Flux Path[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 531-539. doi: 10.3969/j.issn.0258-2724.20210964
    [7]DONG Xuanchang, QU Fengrui, LI Yanfei, WANG Yiqing. Simulation Analysis and Verification on Three-Dimensional Temperature Field of Strain Clamps for Overhead Lines[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 997-1004. doi: 10.3969/j.issn.0258-2724.20180610
    [8]CHEN Weirong, LI Yankun, LI Yan, ZHAO Xingqiang. Temperature Control Strategy for Water-Cooled Proton Exchange Membrane Fuel Cells[J]. Journal of Southwest Jiaotong University, 2015, 28(3): 393-399. doi: 10.3969/j.issn.0258-2724.2015.03.001
    [9]QI Dongchun, SHEN Ruili, LIU Zhangjun, TAN Yunzhi. 3-Node Sptial Saddle Element for Finite Element Calculation of Suspension Bridge[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 942-947. doi: 10.3969/j.issn.0258-2724.2014.06.002
    [10]LI Tian, ZHANG Jiye, ZHANG Weihua. Efficient Computation of Space-Time Finite Element Method[J]. Journal of Southwest Jiaotong University, 2008, 21(6): 772-777.
    [11]WANG Tao, XIAO Jian, YAN Shu. Feedback Linearization and Decoupling Control of Induction Motors[J]. Journal of Southwest Jiaotong University, 2007, 20(2): 181-185.
    [12]FU Long-hai, LI Meng. Variable-Air-Volume Air-Conditioning System Based on PID-ANN Decoupling Control Technology[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 13-17.
    [13]MAOJian-qiang. Finite Element Method for Tunnel with Prefabricated Lining[J]. Journal of Southwest Jiaotong University, 2004, 17(4): 423-427.
    [14]FUHai-ying, HE Chang-rong, CHEN Qun. 2-D Finite Element Analysis of Prestressed Anchorage Sheet-Pile Wall[J]. Journal of Southwest Jiaotong University, 2003, 16(4): 389-392.
    [15]YUAN Feng, CHEN Qiu. Research on FEM Metacomputing Environment DPFEM[J]. Journal of Southwest Jiaotong University, 2001, 14(6): 655-658.
    [16]SONG Shun-cheng, TAN Duo-wang. Nonlinear Finite Element Analysis of Hypervelocity Impact[J]. Journal of Southwest Jiaotong University, 2001, 14(6): 565-561.
  • Cited by

    Periodical cited type(5)

    1. 褚褚,陈鹏荣. 新型侧挂式磁悬浮系统的稳定性分析. 微特电机. 2025(01): 1-9+18 .
    2. 陈建,邓舒同,邹圣楠,郑伟龙. 混合式磁浮系统霍尔传感器安装位置分析. 微特电机. 2025(04): 28-33 .
    3. 申璐,张立伟,修三木,张孟磊,杨长青,吕尚阳. 基于非线性电感的混合电磁铁磁力计算方法. 西南交通大学学报. 2024(04): 786-794 . 本站查看
    4. 颜枫,窦硕,陈骝. 准零刚度磁悬浮隔振平台主动混合控制系统设计. 计算机测量与控制. 2024(08): 222-227 .
    5. 翟明达,张博,李晓龙,龙志强. 基于模糊PID控制的准零刚度磁悬浮隔振平台的设计与实现. 西南交通大学学报. 2023(04): 886-895 . 本站查看

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0701020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.0 %FULLTEXT: 20.0 %META: 75.7 %META: 75.7 %PDF: 4.3 %PDF: 4.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.5 %其他: 9.5 %其他: 0.5 %其他: 0.5 %China: 0.2 %China: 0.2 %Malvern: 0.1 %Malvern: 0.1 %Saitama: 0.1 %Saitama: 0.1 %[]: 0.1 %[]: 0.1 %上海: 1.5 %上海: 1.5 %东莞: 0.7 %东莞: 0.7 %中山: 0.1 %中山: 0.1 %临汾: 0.2 %临汾: 0.2 %保定: 0.3 %保定: 0.3 %兰州: 0.2 %兰州: 0.2 %北京: 3.5 %北京: 3.5 %十堰: 0.3 %十堰: 0.3 %南京: 0.4 %南京: 0.4 %厦门: 0.1 %厦门: 0.1 %台北: 0.4 %台北: 0.4 %台州: 0.1 %台州: 0.1 %合肥: 0.5 %合肥: 0.5 %呼和浩特: 0.1 %呼和浩特: 0.1 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 0.5 %天津: 0.5 %太原: 0.2 %太原: 0.2 %威海: 0.3 %威海: 0.3 %孝感: 0.1 %孝感: 0.1 %宁波: 0.1 %宁波: 0.1 %宣城: 0.5 %宣城: 0.5 %巴约讷: 0.1 %巴约讷: 0.1 %常州: 0.2 %常州: 0.2 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.7 %广州: 0.7 %张家口: 1.0 %张家口: 1.0 %惠州: 0.2 %惠州: 0.2 %成都: 1.6 %成都: 1.6 %扬州: 1.3 %扬州: 1.3 %抚州: 0.1 %抚州: 0.1 %揭阳: 0.1 %揭阳: 0.1 %新加坡: 0.1 %新加坡: 0.1 %昆明: 0.1 %昆明: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.7 %杭州: 0.7 %武汉: 1.1 %武汉: 1.1 %池州: 1.1 %池州: 1.1 %沈阳: 0.3 %沈阳: 0.3 %泉州: 0.7 %泉州: 0.7 %法夫: 0.1 %法夫: 0.1 %洛阳: 0.5 %洛阳: 0.5 %淮安: 0.1 %淮安: 0.1 %深圳: 0.8 %深圳: 0.8 %温州: 0.1 %温州: 0.1 %漯河: 2.6 %漯河: 2.6 %漳州: 0.2 %漳州: 0.2 %石家庄: 5.6 %石家庄: 5.6 %绍兴: 0.3 %绍兴: 0.3 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 15.8 %芒廷维尤: 15.8 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.5 %苏州: 0.5 %葵涌: 0.1 %葵涌: 0.1 %衡阳: 0.3 %衡阳: 0.3 %西宁: 33.4 %西宁: 33.4 %西安: 1.5 %西安: 1.5 %诺沃克: 0.1 %诺沃克: 0.1 %赣州: 0.1 %赣州: 0.1 %运城: 0.9 %运城: 0.9 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.9 %郑州: 0.9 %长沙: 3.2 %长沙: 3.2 %雷德蒙德: 0.1 %雷德蒙德: 0.1 %青岛: 0.4 %青岛: 0.4 %香港: 0.2 %香港: 0.2 %其他其他ChinaMalvernSaitama[]上海东莞中山临汾保定兰州北京十堰南京厦门台北台州合肥呼和浩特哥伦布嘉兴天津太原威海孝感宁波宣城巴约讷常州平顶山广州张家口惠州成都扬州抚州揭阳新加坡昆明朝阳杭州武汉池州沈阳泉州法夫洛阳淮安深圳温州漯河漳州石家庄绍兴舟山芒廷维尤芝加哥苏州葵涌衡阳西宁西安诺沃克赣州运城邯郸郑州长沙雷德蒙德青岛香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article views(692) PDF downloads(39) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return