Citation: | SUN Feng, PEI Wenzhe, JIN Junjie, ZHAO Chuan, XU Fangchao, ZHANG Ming. Floating Control Method for Permanent Magnetic Levitation Platform with Variable Flux Path[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 531-539. doi: 10.3969/j.issn.0258-2724.20210964 |
Application of the magnetic levitation technology in ultra-clean transmission can effectively reduce dust pollution. The permanent magnetic levitation platform with a variable flux path has the characteristics of low-power consumption and anti-adsorption, which can avoid the large temperature rise in electromagnetic levitation systems and poor safety of hybrid electromagnetic levitation systems. To avoid the instability in the floating, three floating control methods are presented and validated, which are decentralized control, centralized control and integral separation. At first, the magnetic-force control mechanism of the platform is analyzed to build its dynamic model, and the decentralized control strategy is adopted to realize the floating. Furthermore, a 3-DOF centralized control strategy is proposed to prevent platform tilt, in which the vertical controller is PD (proportional differential) and the rolling and pitching are controlled by PID (proportional integral differential). Finally, the integral separation method is used for subsection control to realize the accurate vertical positioning. The results indicate that the centralized control method realizes the self-correction of the platform tilt angle with the adjustment time of 0.5 s, which solves the platform tilt caused by the magnetic characteristics difference of each pole in the decentralized control. Moreover, when using the integral separation method, the vertical steady-state error of the platform can be reduced from 0.23 mm to 0 with the adjustment time of 3.0 s.
[1] |
邓自刚,张勇,王博,等. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报,2019,54(5): 1063-1072. doi: 10.3969/j.issn.0258-2724.20180204
DENG Zigang, ZHANG Yong, WANG Bo, et al. Present situation and prospect of evacuated tube transportation system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1063-1072. doi: 10.3969/j.issn.0258-2724.20180204
|
[2] |
徐园平,周瑾,金超武,等. 抗磁悬浮研究综述[J]. 机械工程学报,2019,55(2): 214-222.
XU Yuanping, ZHOU Jin, JIN Chaowu, et al. Diamagnetic levitation: a review[J]. Journal of Mechanical Engineering, 2019, 55(2): 214-222.
|
[3] |
巩磊,杨智,祝长生. 主动电磁轴承-刚性转子系统加速响应的鲁棒性[J]. 电工技术学报,2021,36(2): 268-281.
GONG Lei, YANG Zhi, ZHU Changsheng. Acceleration responses robustness of active magnetic bearings-rigid rotor system[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 268-281.
|
[4] |
段吉安,郭宁平,周海波. 一种新型磁悬浮直线运动平台的热分析[J]. 中国电机工程学报,2011,31(15): 114-120.
DUAN Ji’an, GUO Ningping, ZHOU Haibo. Thermal analysis of a novel linear maglev transportation platform[J]. Proceedings of the CSEE, 2011, 31(15): 114-120.
|
[5] |
KIM J, HA C W, KING G B, et al. Experimental development of levitation control for a high-accuracy magnetic levitation transport system[J]. ISA Transactions, 2020, 101: 358-365.
|
[6] |
COEY J M D. Perspective and prospects for rare earth permanent magnets[J]. Engineering, 2020, 6(2): 119-131.
|
[7] |
MORISHITA M, AZUKIZAWA T, KANDA S, et al. A new MAGLEV system for magnetically levitated carrier system[J]. IEEE Transactions on Vehicular Technology, 1989, 38(4): 230-236.
|
[8] |
KIM K J, HAN H S, KIM C H, et al. Dynamic analysis of a maglev conveyor using an EM-PM hybrid magnet[J]. Journal of Electrical Engineering and Technology, 2013, 8(6): 1571-1578.
|
[9] |
OKA K, TOSHIRO H, TAKUYA S. Hanging type MAGLEV system with permanent magnet motion control[J]. IEEJ Transactions on Industry Applications, 1999, 119(3): 291-297.
|
[10] |
孙凤,韦伟,金嘉琦,等. 永磁悬浮非接触回转驱动系统[J]. 机械工程学报,2017,53(20): 192-201.
SUN Feng, WEI Wei, JIN Jiaqi, et al. Non-contact rotation driving system using permanent-magnetic suspension[J]. Journal of Mechanical Engineering, 2017, 53(20): 192-201.
|
[11] |
LIN J, OKA K, HARADA A. Zero-power tip-tilt control of a magnetically levitated platform by lateral displacement of hybrid-electromagnets[J]. International Journal of Applied Electromagnetics and Mechanics, 2021, 66(1): 63-74.
|
[12] |
ZHAO C, OKA K, SUN F, et al. Design of zero-power control strategy with resisting tilt of hybrid magnetic levitation system[J/OL]. IEEE Transactions on Industrial Electronics, 2021: 3121670.1-3121670.10.[2021-10-22]. https://ieeexplore.ieee.org/document/9592690
|
[13] |
UENO T, HIGUCHI T. Zero-power magnetic levitation using composite of magnetostrictive/piezoelectric materials[J]. IEEE Transactions on Magnetics, 2007, 43(8): 3477-3482.
|
[14] |
ISHIBASHI N, MIZUNO T, ISHINO Y, et al. The proposal of magnetic suspension using laterally control flux-path mechanism[J]. Actuators, 2017, 6(1): 11.
|
[15] |
OKA K, YAMAMOTO K, HARADA A. Magnetic suspension mechanism using rotary permanent magnets[J]. International Journal of Applied Electromagnetics and Mechanics, 2020, 64(1/2/3/4): 977-983.
|
[16] |
SUN F, OKA K, JIN J J. A zero suspension force improvement method of a permanent magnetic suspension device[J]. International Journal of Applied Electromagnetics and Mechanics, 2013, 41(1): 1-12.
|
[17] |
李强,唐敬虎,孙凤,等. 可变磁路式永磁悬浮系统的防跌落防吸附控制[J]. 仪器仪表学报,2019,40(3): 246-254.
LI Q, TANG J H, SUN F, et al. Anti-fall and anti-adsorption control of permanent magnetism levitation system with flux path control[J]. Chinese Journal of Scientific Instrument, 2019, 40(3): 246-254.
|
[18] |
ZHAO C, SUN F, JIN J J, et al. Analysis of quasi-zero power characteristic for a permanent magnetic levitation system with a variable flux path control mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(1): 437-447.
|
[1] | WANG Cheng, WANG Tao, HUANG Xing, LIU Xiangyun, LI Zhengliang, LIU Chang. Overall Reliability Analysis of Transmission Towers with Asymmetrical Legs Based on Sample Moment and Maximum Entropy Method[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230105 |
[2] | QIN Qiancong, WU Guanlin, GAO Yuan, WANG Shuangshuang, LI Peng. Distributed Storage Methods for Unmanned Aerial Vehicle Clusters in Battlefield[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 942-958. doi: 10.3969/j.issn.0258-2724.20230521 |
[3] | WEI Fanan, LIU Ying. Two-Degree-of-Freedom Maglev Platform for Micro Machining[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1318-1327. doi: 10.3969/j.issn.0258-2724.20220583 |
[4] | LIAO Quanmi, HUANG Sheng, WANG Yu, LI Xiang. Human Performance in Vessel Passages Based on Improved TOPSIS Method[J]. Journal of Southwest Jiaotong University, 2015, 28(3): 536-542. doi: 10.3969/j.issn.0258-2724.2015.03.024 |
[5] | BAI Tao, HUANG Xiaoming. Limit Equilibrium Method of Slope Stability Analysis Considering Spatial Variability of Soil Properties[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 662-667. doi: 10.3969/j.issn.0258-2724.2014.04.016 |
[6] | SHI Wanyuan, ZHANG Fengchao, TIAN Xiaohong, TSUKADA Takao. Phase Field Modeling of Internal Convection and Free Interface Deformation of Levitated Droplet of Molten Silicon[J]. Journal of Southwest Jiaotong University, 2012, 25(4): 692-697. doi: 10.3969/j.issn.0258-2724.2012.04.025 |
[7] | LIU Wei, LI Qun-Chen, TANG Bing, CHEN Min-Wu. Probabilistic Load Flow for Urban Rail Traction Power Supply Based on Monte Carlo Simulation[J]. Journal of Southwest Jiaotong University, 2010, 23(4): 561-567. doi: 10. 3969/ j. issn. 0258-2724. |
[8] | ZHOU Lingyuan, LI Tongmei, LI Qiao. Nonlinear Beam Element with Meshed Sections[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 726-731. |
[9] | TAN Daiming, QI Taiyue. Sensitivity Analysis of Geoelectric Parameters in Transient Electromagnetic Method for Tunnels[J]. Journal of Southwest Jiaotong University, 2008, 21(5): 679-684. |
[10] | LIU Xin, QIU Yuanying, SHENG Ying, LI Junhua. Optimization of Comprehensive Performance of Planar Redundant Parallel Manipulator[J]. Journal of Southwest Jiaotong University, 2008, 21(5): 626-632. |
[11] | ZHENG Xiaowu. Period-Doubling Bifurcations of Period Motion of Two-Degree-of-Freedom Manipulators[J]. Journal of Southwest Jiaotong University, 2006, 19(3): 396-399. |
[12] | SONGJiu-peng, DONGDa-wei, GAO Guo-an. A Decision Model for Product Scheme Evaluation Based on AHP and Degree of Gray Incidence[J]. Journal of Southwest Jiaotong University, 2002, 15(4): 463-466. |
[13] | YANG Jie, CHEN Qiu. A Monte-Carlo Stochastic FEM Based on Conjugate Gradients Method[J]. Journal of Southwest Jiaotong University, 2002, 15(6): 647-650. |
[14] | GONGHui, QIANG Shiz-hong. Maximum Superiority Searching Method[J]. Journal of Southwest Jiaotong University, 2001, 14(3): 286-290. |
1. | 詹宝容,庾锡昌. 联合收割机裂纹转子与滚动轴承故障诊断系统研究——基于卷积神经网络. 农机化研究. 2024(05): 187-191 . ![]() |