Processing math: 100%
  • ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
SONG Chunsheng, YIN Rui, WEI Zihang, WANG Peng. Simulation on Decoupling Control of Maglev Flexible Rotor System[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 761-772. doi: 10.3969/j.issn.0258-2724.20220773
Citation: SONG Chunsheng, YIN Rui, WEI Zihang, WANG Peng. Simulation on Decoupling Control of Maglev Flexible Rotor System[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 761-772. doi: 10.3969/j.issn.0258-2724.20220773

Simulation on Decoupling Control of Maglev Flexible Rotor System

doi: 10.3969/j.issn.0258-2724.20220773
  • Received Date: 07 Nov 2022
  • Rev Recd Date: 03 Apr 2023
  • Available Online: 16 Jun 2023
  • Publish Date: 21 Apr 2023
  • At present, the decoupling control research on maglev rotor systems is mainly based on rigid rotor systems, but the elastic mode of the rotor cannot be ignored under high speed and high support stiffness. Aiming at the decoupling control problem of maglev flexible rotors, this paper first built a flexible rotor model, simplified the model by modal truncation method, and obtained the decoupled system through state feedback decoupling; then an internal model controller was designed based on the decoupled system, and the state observer was designed according to the characteristic that the state variables were not easily obtained by the sensors; finally, the decoupling effect of the system was simulated. The simulation results show that the displacement response of the uncoupled system contains multiple frequency components related to the natural frequency of the system, while that of the decoupled system only contains the same frequency component of the excitation; the mechanical coupling within the same coordinate plane has decreased from the order of 10−5 m to 106 m, and the coupling between the two radial directions caused by the gyroscopic effect has decreased from the order of 106 m to1019 m, with both mechanical coupling and gyroscopic effect coupling effectively controlled; the standard deviation of the distance from the axis to the reference point during stable levitation has decreased from 6.52×109 m to 6.38×1012 m, and the operation fluctuation of the system is smaller after decoupling; when the rotor accelerates and is disturbed by noises, the system response is no longer affected by the natural frequency and always remains stable; the state feedback decoupling is also effective for different control methods.

     

  • [1]
    谢振宇. 电磁轴承系统及其工业应用[D]. 西安: 西安交通大学, 2000.
    [2]
    王晓光,胡业发,江征风,等. 磁悬浮系统机械耦合的研究[J]. 武汉理工大学学报,2002(12): 65-68.

    WANG Xiaoguang, HU Yefa, JANG Zhengfeng, et al. Research on mechanical coupling of magnetic suspension system[J]. Journal of Wuhan University of Technology, 2002(12): 65-68.
    [3]
    沈钺,孙岩桦,王世琥,等. 磁悬浮飞轮系统陀螺效应的抑制[J]. 西安交通大学学报,2003,37(11): 1105-1109.

    SHEN Yue, SUN Yanhua, WANG Shihu, et al. The suppression of gyroscopic effect of magnetically suspended flywheel system[J]. Journal of Xi’an Jiaotong University, 2003, 37(11): 1105-1109.
    [4]
    刘峰,王德明,欧阳慧珉,等. 基于交叉解耦的滑模控制在磁轴承中的应用[J]. 轴承,2014(11): 12-15,47.

    LIU Feng, WANG Deming, OUYANG Huimin et al. Application of sliding mode control based on cross decoupling in magnetic bearings[J]. Bearing, 2014(11): 12-15,47.
    [5]
    QIAO X L, TANG X P. The stability of magnetic levitation milling system based on modal decoupling control[J]. Shock and Vibration, 2020, 2020: 1-9.
    [6]
    毛川. 主动电磁轴承—刚性飞轮转子系统的分析与控制[D]. 浙江: 浙江大学, 2017.
    [7]
    尹增愿,蔡远文,任元,等. 磁悬浮转子状态反馈解耦自抗扰控制方法[J]. 北京航空航天大学学报,2022,48(7): 1210-1221. doi: 10.13700/j.bh.1001-5965.2021.0021

    YIN Zengyuan, CAI Yuanwen, REN Yuan, et al. Decoupled active disturbance rejection control method for magnetically suspended rotor based on state feedback[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1210-1221. doi: 10.13700/j.bh.1001-5965.2021.0021
    [8]
    CHENG X, CHENG B X, DENG S, et al. State-feedback decoupling control of 5-DOF magnetic bearings based on α-order inverse system[J]. Mechatronics, 2020, 68: 102358.1-102358.10.
    [9]
    LI Y Y, ZHU H Q. Decoupling control of three degrees of freedom hybrid magnetic bearing based on LS-SVM[J]. Applied Mechanics and Materials, 2014, 529: 534-538. doi: 10.4028/www.scientific.net/AMM.529.534
    [10]
    魏子航,宋春生,李俊,等. 变刚度支承下电磁轴承−转子系统振动特性研究[J]. 轴承,2022(3): 15-22. doi: 10.19533/j.issn1000-3762.2022.03.003

    WEI Zihang, SONG Chunsheng, LI Jun, et al. Research on vibration characteristics of magnetic suspension bearing-rotor system under variable supporting stiffness[J]. Bearing, 2022(3): 15-22. doi: 10.19533/j.issn1000-3762.2022.03.003
    [11]
    冉少林. 基于鲁棒控制的磁悬浮柔性转子建模及稳定性控制研究[D]. 武汉: 武汉理工大学, 2019.
    [12]
    徐园平. 柔性转子磁悬浮轴承支承特性辨识[D]. 南京: 南京航空航天大学, 2018.
    [13]
    朱伟明,杨艳,刘泽远,等. 基于模态参与因子的无轴承开关磁阻电机振动分析与抑制[J]. 微电机,2022,55(10): 8-15. doi: 10.3969/j.issn.1001-6848.2022.10.002

    ZHU Weiming, YANG Yan, LIU Zeyuan, et al. Vibration analysis of bearingless switched reluctance motor based on modal participation factor[J]. Micromotors, 2022, 55(10): 8-15. doi: 10.3969/j.issn.1001-6848.2022.10.002
    [14]
    孙兆萍. 非线性系统内模控制策略[D]. 北京: 北京化工大学, 2014.
    [15]
    刘芸. 内模控制及逆系统算法在船舶运动控制中的仿真研究[J]. 舰船科学技术,2016,38(11): 111-115,119.

    LIU Yun. Research on internal model control and inverse system theory in the simulation of ship motion control[J]. Ship Science and Technology, 2016, 38(11): 111-115,119.
    [16]
    王孝武. 现代控制理论基础[M]. 3版. 北京: 机械工业出版社, 2013.
    [17]
    GAO H, MENG X H, QIAN K J. The impact analysis of beating vibration for active magnetic bearing[J]. IEEE Access, 2019, 7: 134104-134112. doi: 10.1109/ACCESS.2019.2932723
    [18]
    韩军,高德平,胡绚,等. 航空发动机双转子系统的拍振分析[J]. 航空学报,2007,28(6): 1369-1373. doi: 10.3321/j.issn:1000-6893.2007.06.017
  • Relative Articles

    [1]KANG Huimin, XI Jiale, LIU Houcai, DUAN Lianghui. Rotational Inertial Characteristics and Dynamic Response of Motorized Spindle Time-Varying Mass System for Magnetic Suspension Milling[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240295
    [2]LIU Xin, YUAN Pengyu. Modeling and Simulation of a Novel Heteropolar Radial Hybrid Magnetic Bearing[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230315
    [3]ZHANG Yue, XU Yuanping, ZHOU Jin, ZHOU Yang. Vibration and Stability Evaluation of Magnetically Suspended Fluid Machinery Based on API617[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240340
    [4]XU Xianze, SONG Mingxing, GONG Yongxing, XU Fengqiu, WANG Dijin, SUI Bowen, GUO Qingquan. Fractional-Order Sliding Mode Control for Maglev Rotary Table Based on Disturbance Compensation[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 766-775. doi: 10.3969/j.issn.0258-2724.20230412
    [5]GONG Lei, HE Pai, SHI Yong, ZHU Changsheng. Non-Singular Fast Terminal Sliding Mode Rotor Position Control of Active Magnetic Bearings[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240090
    [6]ZHOU Yang, ZHOU Jin, WANG Yiyu, ZHANG Yue, XU Yuanping. Modeling and Robust Control of Magnetic Bearing-Rotor System Considering Interface Contact[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 755-765. doi: 10.3969/j.issn.0258-2724.20230510
    [7]JIN Junjie, WANG Yanfeng, XU Chengcheng, LU Wenxuan, ZHANG Xiaoyou, SUN Feng, XU Fangchao. Design and Magnetic Force Characteristic Analysis of Magnetic Levitation Bearing for Artificial Kidney Pumps[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 795-803. doi: 10.3969/j.issn.0258-2724.20230090
    [8]JIN Chaowu, XIN Yu, ZHOU Yang, ZHAO Ruijin, ZHOU Jin, XU Yuanping. Modeling and Dynamics Analysis of High-Temperature Magnetic Bearing-Rotor System[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 746-754, 822. doi: 10.3969/j.issn.0258-2724.20230667
    [9]SONG Shizhe, DONG Dawei, HUANG Yan, XU Fanghui, ZHANG Wei, YAN Bing. Vibration Energy Decoupling Method and Application for Flexible Double-Layer Vibration Isolation Systems[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 304-313. doi: 10.3969/j.issn.0258-2724.20210993
    [10]ZOU Shengnan, LIU Chang, DENG Shutong, LIU Ying, CHEN Pengrong. Decoupling and Control Stability Analysis Based on Hybrid Repulsion Maglev Platform[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 540-548. doi: 10.3969/j.issn.0258-2724.20210750
    [11]GUAN Xudong, ZHOU Jin, JIN Chaowu, YAO Runhui. Misalignment Vibration Detection of Magnetic Suspension Multi-Span Rotors Based on SOGI-FLL-WPF[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 665-674. doi: 10.3969/j.issn.0258-2724.20210810
    [12]HU Yusheng, LI Liyi, GUO Weilin, LI Xin. Support Stiffness of Magnetic Bearing Based on Unequal Magnetic Circuit Area Design Method[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 648-656. doi: 10.3969/j.issn.0258-2724.20210888
    [13]HU Guangdi, WANG Guohui, LUO Huiyu, ZHOU Ke, LANG Xiaoyue. Robust Control of the Air Conditioning System of an Electric Vehicle with Actuator Fault[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 351-358. doi: 10.3969/j.issn.0258-2724.2018.02.018
    [14]GUO Yuanbo, ZHANG Xiaohua, CHEN Hongjun. Nonlinear Control of PWM Rectifier Based on Bilinear System Theory[J]. Journal of Southwest Jiaotong University, 2009, 22(2): 232-237.
    [15]ZHANG Xiang, XIAO Jian. Output Feedback Control for Distributed Network Control System[J]. Journal of Southwest Jiaotong University, 2007, 20(1): 29-34.
    [16]WANG Tao, XIAO Jian, YAN Shu. Feedback Linearization and Decoupling Control of Induction Motors[J]. Journal of Southwest Jiaotong University, 2007, 20(2): 181-185.
    [17]FU Long-hai, LI Meng. Variable-Air-Volume Air-Conditioning System Based on PID-ANN Decoupling Control Technology[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 13-17.
    [18]DING Wang-cai. Hopf Bifurcation of Flywheel Governor with Feedback Control Device[J]. Journal of Southwest Jiaotong University, 2001, 14(6): 624-628.
  • Cited by

    Periodical cited type(2)

    1. 程柳峰,陈亮亮,靳晓光,伍家驹,郭至城,李志农. 基于多维可视化的电磁轴承-柔性转子系统多目标优化控制. 振动与冲击. 2025(04): 40-51+117 .
    2. 巩磊,何派,石勇,祝长生. 主动磁悬浮轴承有限元模型转子位置反步法控制. 陕西科技大学学报. 2024(06): 157-164 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-03010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.0 %FULLTEXT: 19.0 %META: 73.6 %META: 73.6 %PDF: 7.4 %PDF: 7.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.0 %其他: 8.0 %China: 0.4 %China: 0.4 %United States: 0.1 %United States: 0.1 %万隆: 0.1 %万隆: 0.1 %上海: 0.7 %上海: 0.7 %东莞: 1.0 %东莞: 1.0 %临汾: 0.7 %临汾: 0.7 %兰州: 0.1 %兰州: 0.1 %北京: 9.9 %北京: 9.9 %十堰: 0.4 %十堰: 0.4 %南京: 0.6 %南京: 0.6 %南充: 0.4 %南充: 0.4 %南昌: 0.3 %南昌: 0.3 %南通: 0.1 %南通: 0.1 %合肥: 0.6 %合肥: 0.6 %呼和浩特: 0.7 %呼和浩特: 0.7 %哈尔滨: 0.1 %哈尔滨: 0.1 %嘉兴: 0.3 %嘉兴: 0.3 %夏延: 0.1 %夏延: 0.1 %大庆: 0.4 %大庆: 0.4 %天津: 2.0 %天津: 2.0 %太原: 0.6 %太原: 0.6 %宣城: 0.4 %宣城: 0.4 %宿州: 0.1 %宿州: 0.1 %常州: 0.3 %常州: 0.3 %常德: 0.3 %常德: 0.3 %广州: 1.3 %广州: 1.3 %张家口: 8.0 %张家口: 8.0 %成都: 1.2 %成都: 1.2 %扬州: 1.0 %扬州: 1.0 %昆明: 0.9 %昆明: 0.9 %晋中: 0.1 %晋中: 0.1 %曼谷: 0.1 %曼谷: 0.1 %朝阳: 0.3 %朝阳: 0.3 %杭州: 0.6 %杭州: 0.6 %柳州: 0.1 %柳州: 0.1 %武汉: 3.5 %武汉: 3.5 %池州: 0.6 %池州: 0.6 %沈阳: 1.5 %沈阳: 1.5 %洛阳: 0.4 %洛阳: 0.4 %济南: 0.3 %济南: 0.3 %济宁: 0.1 %济宁: 0.1 %深圳: 1.0 %深圳: 1.0 %温州: 0.3 %温州: 0.3 %湖州: 0.1 %湖州: 0.1 %漯河: 3.5 %漯河: 3.5 %烟台: 0.1 %烟台: 0.1 %石家庄: 0.7 %石家庄: 0.7 %胡志明: 0.1 %胡志明: 0.1 %芒廷维尤: 8.0 %芒廷维尤: 8.0 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.6 %苏州: 0.6 %葫芦岛: 0.1 %葫芦岛: 0.1 %衡阳: 0.1 %衡阳: 0.1 %西宁: 26.4 %西宁: 26.4 %西安: 0.4 %西安: 0.4 %诺沃克: 0.4 %诺沃克: 0.4 %贵阳: 0.1 %贵阳: 0.1 %达州: 0.1 %达州: 0.1 %运城: 1.3 %运城: 1.3 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.6 %郑州: 0.6 %重庆: 0.1 %重庆: 0.1 %长春: 0.3 %长春: 0.3 %长沙: 4.1 %长沙: 4.1 %青岛: 0.6 %青岛: 0.6 %鞍山: 0.1 %鞍山: 0.1 %其他ChinaUnited States万隆上海东莞临汾兰州北京十堰南京南充南昌南通合肥呼和浩特哈尔滨嘉兴夏延大庆天津太原宣城宿州常州常德广州张家口成都扬州昆明晋中曼谷朝阳杭州柳州武汉池州沈阳洛阳济南济宁深圳温州湖州漯河烟台石家庄胡志明芒廷维尤芝加哥苏州葫芦岛衡阳西宁西安诺沃克贵阳达州运城邯郸郑州重庆长春长沙青岛鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article views(504) PDF downloads(51) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return