• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 21 Issue 6
Dec.  2008
Turn off MathJax
Article Contents
LI Tian, ZHANG Jiye, ZHANG Weihua. Efficient Computation of Space-Time Finite Element Method[J]. Journal of Southwest Jiaotong University, 2008, 21(6): 772-777.
Citation: LI Tian, ZHANG Jiye, ZHANG Weihua. Efficient Computation of Space-Time Finite Element Method[J]. Journal of Southwest Jiaotong University, 2008, 21(6): 772-777.

Efficient Computation of Space-Time Finite Element Method

  • Received Date: 28 May 2008
  • Publish Date: 25 Dec 2008
  • To improve the computational efficiency and reduce the requirement on memory in solving two-dimensional transient incompressible Navier-Stokes equations with space-time finite method,the compressed sparse row format was used to store the large-scale sparse matrix,Newton-Raphson method was adopted to solve the nonlinear equations and the restarted GMRES method with the zero fill-in incomplete triangle decomposition precondition was adopted to solve the linear equations during sub-iterations.To verify the feasibility of the proposed method,the problem of flow around a circular cylinder was numerically simulated at the Reynolds of 100.The required memory with the compressed sparse row format was 3.68% of that with equi-band-width storage method.

     

  • loading
  • Z1ENKIEWCIZ O C,TAYLOR R L.The finite element method[M].Singapore:Elsevier Pte.Ltd.,2003:1-12.[2] BABUSKA I.Error bounds for finite element method[J].Numerical Mathematics,1971,16(4):322-333.[3] TEZDUYAR T E.Stabilized finite element formulation for incompressible flow computations[J].Advances in Applied Mechanics,1991,28(1):1-44.[4] BROOKS A N,HUGES T J R.Streaming-upwind/Petrov-Galerkin formulation for convection dominated flow with particular emphasis on incompressible Navier-Stokes equation[J].Comput.Meth.Appl.Mech.& Eng.,1982,32(1):199-259.[5] HUGES T J R,FRANCA L P,HULBERT G M.A new finite element formulation for computational fluid dynamics:Ⅷ.The Galerkin/least-squares method for advective-diffusive equations[J].Comput.Meth.Appl.Mech.& Eng.,1989,73(2):173-189.[6] TEZDUYAR T E,MITrAL S,RAY S E.Incompressible flow computations with bilinear and linear equal-order-interpolation velocity-pressure elements[J].Comput.Meth.Appl.Mech.& Eng.,1992,95(2):221-242.[7] TEZDUYAR T E,ALIABADI S and BEHR M.Flow simulation and high performance computing[J].Computational Mechanics,1996,18 (6):397-412.[8] SAAD Y.Iterative methods for sparse linear systems[M].Philadelphia:SIAM,2000:158-173.[9] FRANCA L P,FREY S L.Stabilized finite element method:II.The incompressible Navier-Stokes equations[J].Comput.Meth.Appl.Mech.& Eng.,1992,99(2):209-233[10] 吴建平.稀疏线性方程组的高效求解与并行计算[M].长沙:湖南科学技术大学出版社,2004:120-130.[11] BEHR M,HASTREITER D,MITrAL S.Incompressible flow past a circular cylinder:dependence of the computed flow field on the location of the lateral boundaries[J].Comput.Meth.Appl.Mech.& Eng.,1995,123(2):309-316.[12] BEHR M,LIOU J,SHIH R,TEZDUYAR T E.Vorticity-stream function formulation of unsteady incompressible flow past a cylinder:sensitivity of the computed flow field to the location of the outflow boundary[J].International Journal for Numerical Methods in Fluids,1991,12(2):323-342.[13] TEZDUYAR T E,SHIH R.Numerical experiments on downstream boundary of flow past cylinder[J].J.Engrg.Mech.,1991,117(4):854-871[14] SILVA A L F,SIVEIRA-NETO A,DAMASCENO J J R.Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method[J].Journal of Computational Physics,2003,189 (2):351-370.[15] 李万平.计算流体力学[M].武昌:华中科技大学出版社,2004:186-201.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1709) PDF downloads(481) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return