• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 27 Issue 6
Dec.  2014
Turn off MathJax
Article Contents
QI Dongchun, SHEN Ruili, LIU Zhangjun, TAN Yunzhi. 3-Node Sptial Saddle Element for Finite Element Calculation of Suspension Bridge[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 942-947. doi: 10.3969/j.issn.0258-2724.2014.06.002
Citation: QI Dongchun, SHEN Ruili, LIU Zhangjun, TAN Yunzhi. 3-Node Sptial Saddle Element for Finite Element Calculation of Suspension Bridge[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 942-947. doi: 10.3969/j.issn.0258-2724.2014.06.002

3-Node Sptial Saddle Element for Finite Element Calculation of Suspension Bridge

doi: 10.3969/j.issn.0258-2724.2014.06.002
  • Received Date: 18 Mar 2014
  • Publish Date: 25 Dec 2014
  • In order to solve the computational problem of nonlinear contact between main cable and saddle on tower top, a new 3-node spatial saddle element, including the saddle on tower top and both sides of the main cable, was produced. Based on the spatial catenary theory and the geometric relationship between main cable and saddle, the location of the tangent points and the cable force at the tangent points were obtained by solving the element state determination problem with known conditions. The accurate nodal force of the element was derived according to the static equilibrium. The elements of the tangent stiffness matrix were calculated based on its definition by replacing the differential with the increment. The new element could automatically satisfy the condition that the main cable is always tangent to the saddle, and thus the saddle jacking could be conveniently realized by modifying a parameter. Calculation shows that the new element has high calculation accuracy and convergence rate. The calculation results are the same with the numerical analytical solutions. The number of iterations is generally less than 12 in each element state solution.

     

  • loading
  • 潘永仁,杜国华,范立础. 悬索桥恒载结构几何形状及内力的精细计算[J]. 中国公路学报,2000,13(4): 33-36. PAN Yongren, DU Guohua, FAN Lichu. A fine calculation of the geometry and internal force of suspension bridge under dead load[J]. China Journal of Highway and Transport, 2000, 13(4): 33-36.
    唐茂林,强士中,宁晓骏. 悬索桥索鞍理论位置的精确计算[J]. 工程力学,1999(增刊): 339-344.
    李传习,王雷,刘光栋. 悬索桥索鞍位置的分离计算法[J]. 中国公路学报,2005,18(1): 63-68. LI Chuanxi, WANG Lei, LIU Guangdong. Separate calculation method on suspension bridge saddle's position[J]. China Joural of Highway and Transport, 2005, 18(1): 63-68.
    罗喜恒,肖汝诚,项海帆. 用于悬索桥非线性分析的鞍座—索单元[J]. 土木工程学报,2005,38(6): 47-53. LUO Xiheng, XIAO Rucheng, XIANG Haifan. Saddle-cable element for nonlinear analysis of suspension bridge[J]. China Civil Engineering Journal, 2005, 38(6): 47-53.
    齐东春,沈锐利,陈卫国. 悬索桥结构分析中鞍座单元的研究及应用[J]. 桥梁建设,2011(1): 35-38. QI Dongchun, SHEN Ruili, CHEN Weiguo. Research and application of saddle element in structural analysis of suspension bridge[J]. Bridge Construction, 2011(1): 35-38.
    罗喜恒,肖汝诚,项海帆. 空间缆索悬索桥的主缆线形分析[J]. 同济大学学报:自然科学版,2004,32(10): 1394-1354. LUO Xiheng, XIAO Rucheng, XIANG Haifan. Cable shape analysis of suspension bridge with spatial cables[J]. Journal of Tongji University: Natrual Science, 2004, 32(10): 1394-1354.
    齐东春. 大跨径悬索桥主缆精细化计算研究[D]. 成都:西南交通大学,2012.
    PEYROT A H, GOULOIS A M. Analysis of cable structures[J]. Computers & Structures, 1979, 10(5): 805-813.
    KIM H K, LEE M J, CHANG S P. Non-linear shape-finding analysis of a self-anchored suspension bridge[J]. Engineer Structures, 2002, 24: 1547-1559.
    沈锐利. 悬索桥主缆系统设计及架设计算方法研究[J]. 土木工程学报,1996,29(2): 3-9. SHEN Ruili. Calculation methods for design and erection of cable curve of suspension bridge[J]. China Civil Engineering Journal, 1996, 29(2): 3-9.
    潘永仁. 悬索桥结构非线性分析理论与方法[M]. 北京:人民交通出版社,2004: 35-112.
    ZUPAN D, SAJE M. Rotational invariants in finite element formulation of three-dimensional beam theories[J]. Computer and Structures, 2004, 82: 2027-2040.
    齐东春,沈锐利,唐茂林. 悬索桥的锚碇-锚跨单元研究及应用[J]. 公路交通科技,2011,28(2): 82-92. QI Dongchun, SHEN Ruili, TANG Maolin. Study and application of anchorage-anchor span element for suspension bridges[J]. Journal of Highway and Transportation Research and Development, 2011, 28(2): 82-92.
    唐茂林. 大跨度悬索桥空间几何非线性分析与软件开发[D]. 成都:西南交通大学,2003.
    丁顺泉,陈艾荣,项海帆. 空间杆系结构实用几何非线性分析[J]. 力学季刊,2001,22(3): 300-306. DING Shunquan, CHEN Airong, XIANG Haifan. Geometrically nonlinear practical analysis of spatial frames[J]. Chinese Quarterly Mechanics, 2001, 22(3): 300-306.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1067) PDF downloads(424) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return