• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 59 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
ZHU He, YUAN Ming, GUO Xin. Finite Element Analysis on Layered Mechanical Properties of Carbon Fiber Wires Under Influence of Temperature[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 700-711. doi: 10.3969/j.issn.0258-2724.20210686
Citation: ZHU He, YUAN Ming, GUO Xin. Finite Element Analysis on Layered Mechanical Properties of Carbon Fiber Wires Under Influence of Temperature[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 700-711. doi: 10.3969/j.issn.0258-2724.20210686

Finite Element Analysis on Layered Mechanical Properties of Carbon Fiber Wires Under Influence of Temperature

doi: 10.3969/j.issn.0258-2724.20210686
  • Received Date: 24 Aug 2021
  • Rev Recd Date: 30 Dec 2021
  • Available Online: 16 Mar 2024
  • Publish Date: 31 Mar 2022
  • In order to clarify the effect of temperature on the layered mechanical properties of carbon fiber wires, while the critical temperature is considered, the gravitational strain distributions of each wire layer, strand and section in the breaking force conditions are calculated at temperatures driven by different voltages of an electric heating. The results show that, above the critical temperature, the carbon core is subjected to positive stress and the aluminum strand to a negative stress, making the wire unable to bear the breaking force. The maximum stress and strain of each strand appear at both ends of the wire, and the stress and strain at the chamfer position are slightly larger than the stress on the main body of the strand. The maximum stress at each wire cross-section is positive and occurs at the core, and near the end where the force acts it drops sharply. Carbon fiber wires are more suitable for various temperatures, but the changes in the mechanical characteristics at the clamping position at wire ends and at the small and medium trapezoidal sections need more exploration.

     

  • loading
  • [1]
    于广辉,邓云坤. 碳纤维复合导线发展综述[J]. 热加工工艺,2019,48(20): 1-5,9.

    YU Guanghui, DENG Yunkun. Review on development of carbon fiber composite conductor[J]. Hot Working Technology,2019,48(20): 1-5,9.
    [2]
    赵丹妮. 大负荷条件下碳纤维复合芯导线热特性及载流能力研究[D]. 吉林:东北电力大学,2018.
    [3]
    袁贝尔,应展烽,齐保军,等. 高压碳纤维复合芯导线输电线路热过载运行的风险评估方法[J]. 电力系统自动化,2018,42(1): 111-117.

    YUAN Beier, YING Zhanfeng, QI Baojun, et al. Overheating risk assessment method for high voltage transmission line using aluminum conductor composite core[J]. Automation of Electric Power Systems,2018,42(1): 111-117.
    [4]
    刘春城,陈诚. 考虑流固耦合效应的碳纤维复合芯导线风振响应分析[J]. 应用基础与工程科学学报,2013,21(6): 1116-1124.

    LIU Chuncheng, CHEN Cheng. Wind-induced dynamic response of carbon fiber core wire by considering fluid structure interaction effect[J]. Journal of Basic Science and Engineering,2013,21(6): 1116-1124.
    [5]
    刘亮,姚一鸣,蒋鑫,等. 架空线路碳纤维复合芯导线舞动特性实验[J]. 振动. 测试与诊断,2019,39(4): 816-821.

    LIU Liang, YAO Yiming, JIANG Xin, et al. Experimental research on galloping properties of carbon fiber composite core on overhead line[J]. Journal of Vibration, Measurement & Diagnosis,2019,39(4): 816-821.
    [6]
    朱院院,张晓敏,龙鹏,等. 考虑接触摩擦与各向异性性能的碳纤维复合芯导线(ACCC)径向耐压性能的有限元分析[J]. 玻璃钢/复合材料,2019(8): 29-34.

    ZHU Yuanyuan, ZHANG Xiaomin, LONG Peng, et al. Finite element analysis of radial compressive behavior of accc considering contact friction and anisotropic properties[J]. Fiber Reinforced Plastics/Composites,2019(8): 29-34.
    [7]
    秦力,刘芳卉,宋阳. 碳纤维复合芯导线股线应力有限元分析[J]. 水电能源科学,2017,35(5): 182-186.

    QIN Li, LIU Fanghui, SONG Yang. Finite element analysis of ACCC strands stress[J]. Water Resources and Power,2017,35(5): 182-186.
    [8]
    沈楚莹,尹芳辉,燕秀,等. 绞合型碳纤维复合芯导线的弧垂特性研究[J]. 电网技术,2021,45(12): 4964-4970.

    SHEN Chuying, YIN Fanghui, YAN Xiu, et al. Sag characteristics of stranded carbon fiber composite core conductor[J]. Power System Technology,2021,45(12): 4964-4970.
    [9]
    鲍星辉,杨长龙,张玉良,等. 具有过渡点温度特性导线的力学计算及工程应用[J]. 玻璃钢/复合材料,2016(8): 82-86.

    BAO Xinghui, YANG Changlong, ZHANG Yuliang, et al. Mechanical calculation and engineering application for the conductor with the inflection point temperature characteristic[J]. Fiber Reinforced Plastics/Composites,2016(8): 82-86.
    [10]
    祝贺,刘雨菲,张瑾,等. 输电线路导线分层力学特性仿真及试验研究[J]. 应用力学学报,2020,37(4): 1812-1817.

    ZHU He, LIU Yufei, ZHANG Jin, et al. Simulation and experimental study on layered mechanical characteristics of transmission lines[J]. Chinese Journal of Applied Mechanics,2020,37(4): 1812-1817.
    [11]
    芮晓明,赵国良,赵泽中,等. 输电导线新型模型的应力分层特性研究[J]. 华北电力大学学报(自然科学版),2021,48(3): 57-64,107.

    RUI Xiaoming, ZHAO Guoliang, ZHAO Zezhong, et al. Research on stress layering characteristics of new transmission conductor model[J]. Journal of North China Electric Power University (Natural Science Edition),2021,48(3): 57-64,107.
    [12]
    祝贺,刘雨菲,张瑾,等. 输电线路弯曲导线分层力学特性模型及仿真分析[J]. 水电能源科学,2020,38(4): 162-166.

    ZHU He, LIU Yufei, ZHANG Jin, et al. Modeling and simulation analysis of layered mechanical characteristics of bending wires in transmission lines[J]. Water Resources and Power,2020,38(4): 162-166.
    [13]
    孟遂民,孔伟. 架空输电线路设计[M]. 北京:中国电力出版社,2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article views(233) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return