• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
YANG Wanli, WU Chengwei, ZHU Quanlong, WANG Guangjun. Refined Study on 3D Flow Characteristics around Bridge Piers[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 134-143. doi: 10.3969/j.issn.0258-2724.20180335
Citation: YANG Wanli, WU Chengwei, ZHU Quanlong, WANG Guangjun. Refined Study on 3D Flow Characteristics around Bridge Piers[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 134-143. doi: 10.3969/j.issn.0258-2724.20180335

Refined Study on 3D Flow Characteristics around Bridge Piers

doi: 10.3969/j.issn.0258-2724.20180335
  • Received Date: 25 Apr 2018
  • Rev Recd Date: 18 Sep 2018
  • Available Online: 11 Jan 2019
  • Publish Date: 01 Feb 2020
  • In order to investigate into the characteristics and mechanism of the current forces on bridge piers, a refined study on 3D flow around the typical pier model was conducted considering the influence of the free surface. ANSYS FLUENT was employed to address the characteristics of the drag force and lift force on the whole pier model. The pier model was divided into five sections from the bottom to top of the cylinder, characteristics of the drag and lift forces on each section were compared, and the variation law of the drag and lift forces along the water depth was analyzed. Further, the influences of the free surface and the bottom condition on vortex structure were analyzed and the relationship between 3D flow field and current force was discussed. Results show that the current force on pier is not uniformly distributed along the water depth; i.e., the mean value of drag force on cylinder sections c1−c4 accounts for 25%, 30%, 25% and 20%, respectively, of the total drag force on pier, and c5 contributes almost zero due to its exposure to air. The amplitudes of the drag and lift forces in the middle-lower part are larger than those at the bottom, middle-upper, and free surface parts of the water depth. Besides, the alternating vortex shedding causes alternating fluctuations of the free surface at the left and right sides of the cylinder. The free surface suppresses the vortex shedding, and vortices of different scales exist at the free surface, which are quite different from the two alternately shedding vortexes under the free surface. The vortex shedding at the middle-lower part of the pier lags behind the rest parts, resulting in a significant phase difference in the lift force at different parts of the cylinder. The lift force is comparable in magnitude to the average value of the drag force, for example which are respectively 5.511 N, 3.695 N in case 3, showing that the possible vibration of the pier or bridge caused by the lift force cannot be ignored.

     

  • 詹昊,李万平,方秦汉,等. 不同雷诺数下圆柱绕流仿真计算[J]. 武汉理工大学学报,2008,30(12): 129-132.

    ZHAN Hao, LI Wanping, FANG Qinhan, et al. Numerical simulation of the flow around a circular cylinder at varies reynolds number[J]. Journal of Wuhan University of Technology, 2008, 30(12): 129-132.
    雷娟棉,谭朝明. 基于Transition SST模型的高雷诺数圆柱绕流数值研究[J]. 北京航空航天大学学报,2017,43(2): 207-217.

    LEI Juanmian, TAN Zhaoming. Numerical simulation for flow around circular cylinder at high Reynolds number based on Transition SST model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2): 207-217.
    AI Y, FENG D, YE H, et al. Unsteady numerical simulation of flow around 2-D circular cylinder for high Reynolds numbers[J]. Journal of Marine Science and Application, 2013, 12(2): 180-184. doi: 10.1007/s11804-013-1183-0
    蒋科,张德华,戚昱,等. 亚临界雷诺数条件下圆柱绕流特性研究[J]. 海洋工程装备与技术,2017,4(1): 37-42. doi: 10.3969/j.issn.2095-7297.2017.01.008

    JIANG Ke, ZHANG Dehua, QI Yu, et al. Study on the characteristics of flow around cylinder at subcritical Reynolds number[J]. Ocean Engineering Equipment and Technology, 2017, 4(1): 37-42. doi: 10.3969/j.issn.2095-7297.2017.01.008
    SUMNER D. Two circular cylinders in cross-flow: a review[J]. Journal of Fluids and Structures, 2010, 26(6): 849-899. doi: 10.1016/j.jfluidstructs.2010.07.001
    DONG S, KARNIADAKIS G E. DNS of flow past a stationary and oscillating cylinder at Re=10 000[J]. Journal of Fluids and Structures, 2005, 20(4): 519-531. doi: 10.1016/j.jfluidstructs.2005.02.004
    闵强利,张云海. 三维瞬态圆柱绕流数值模拟[J]. 水雷战与舰船防护,2008,16(1): 11-16, 62.

    MIN Qiangli, ZHANG Yunhai. 3D Transition cylinder flow numerical simulation[J]. Mine Warfare & Ship Self-Defence, 2008, 16(1): 11-16, 62.
    蘧鑫晨, 高洋洋, 刘 彩, 等. 不同雷诺数下三维圆柱绕流数值模拟[C]//第十八届中国海洋(岸)工程学术讨论会论文集. 舟山: 海洋出版社, 2017: 240-249
    KAWAMURA T, MAYER S, GARAPON A, et al. Large eddy simulation of a flow past a free surface piercing circular cylinder[J]. Transactions-American Society of Mechanical Engineers Journal of Fluids Engineering, 2002, 124(1): 91-101.
    岳永威,李梦阳,孙龙泉,等. 具有自由液面效应的圆柱绕流三维数值模拟[J]. 船舶,2012,23(4): 16-22. doi: 10.3969/j.issn.1001-9855.2012.04.004

    YU Yongwei, LI Mengyang, SUN Longquan, et al. Numerical simulation of flow around a three-dimensional circular cylinder piercing free surface[J]. Ship & boat, 2012, 23(4): 16-22. doi: 10.3969/j.issn.1001-9855.2012.04.004
    涂程旭,王昊利,林建忠. 圆柱绕流的流场特性及涡脱落规律研究[J]. 中国计量学院学报,2008,19(2): 98-102, 136.

    TU Chengxu, WANG Haoli, LIN Jianzhong. Experimental research on the flow characteristics and vortex shedding in the flow around a circular cylinder[J]. Journal of China Jiliang University, 2008, 19(2): 98-102, 136.
    刘晓亮,许栋,黄雄合,等. 墩柱绕流水动力特性实验和大涡模拟研究[J]. 港工技术,2017,54(6): 20-23.

    LIU Xiaoliang, XU Dong, HUANG Xionghe, et al. Large eddy simulation study and hydrodynamics experiment of flow surrounding a pier[J]. Port Engineering Technology, 2017, 54(6): 20-23.
    严建科,焦臣,龙涛,等. 单圆柱桥墩绕流流场试验究[J]. 西安建筑科技大学学报(自然科学版),2012,44(6): 779-785.

    YAN Jianke, JIAO Chen, LONG Tao, et al. Single-cylindrical pier experimental study on vertex flow field[J]. Journal of Xi’ an University of Architecture & Technology (Natural Science Edition), 2012, 44(6): 779-785.
    段中喆. ANSYS FLUENT流体分析与工程实例[M]. 电子工业出版社, 2015: 144-147.
    赵伟文,万德成. 用SST-DES和SST-URANS方法数值模拟亚临界雷诺数下三维圆柱绕流问题[J]. 水动力学研究与进展A辑,2016,31(1): 1-8.

    ZHAO Weiwen, WAN Decheng. Numerical study of 3D flow past a circular cylinder at subcritical Reynolds number using SST-DES and SST-URANS[J]. Chinese Journal of Hydrodynamics, 2016, 31(1): 1-8.
  • Relative Articles

    [1]YANG Jun, GAO Zhiming, LI Jintai, ZHANG Chen. Correspondence Calculation of Three-Dimensional Point Cloud Model Based on Attention Mechanism[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1184-1193. doi: 10.3969/j.issn.0258-2724.20220682
    [2]DAI Zhiyuan, LI Tian, ZHANG Weihua, ZHANG Jiye. Effect of Aerodynamic Wings on Lift Force Characteristics of High-Speed Maglev Train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 498-505. doi: 10.3969/j.issn.0258-2724.20210855
    [3]ZHANG Yu, ZHANG Dingli, XU Tong, XIONG Leijin. Analysis of Three-Dimensional Seepage Field and Prediction of Water Inflow in Excavation Face of Underwater Tunnels[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1260-1267. doi: 10.3969/j.issn.0258-2724.20200397
    [4]DONG Xuanchang, QU Fengrui, LI Yanfei, WANG Yiqing. Simulation Analysis and Verification on Three-Dimensional Temperature Field of Strain Clamps for Overhead Lines[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 997-1004. doi: 10.3969/j.issn.0258-2724.20180610
    [5]ZHONG Yongli, YAN Zhitao, WANG Lingzhi, YOU Yi. Large Eddy Simulation of Unsteady Downburst Outflow Based on Wall Jet Model[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1179-1186. doi: 10.3969/j.issn.0258-2724.2018.06.013
    [6]LI Xi, JIA Hongyu, LI Qian, KANG Rui, CHEN Zhiwei. Effect of Pounding on Elastic-Plastic Dynamic Response of High Pier Bridge in Mountainous Area[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 109-118. doi: 10.3969/j.issn.0258-2724.2018.01.014
    [7]ZHANG Xun, SU Bin, LI Xiaozhen, ZHANG Jianqiang. Special Longitudinal Forces between Continuous Welded Rail and Long-Span Simply Supported Beam Bridge with High Piers and Their Influences[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 57-64. doi: 10.3969/j.issn.0258-2724.2016.01.009
    [8]ZHU Zhiwen. Numerical Simulation of Stochastic Characteristics of Fluctuating Lift on a Fixed Circular Cylinder[J]. Journal of Southwest Jiaotong University, 2013, 26(6): 975-982. doi: 10.3969/j.issn.0258-2724.2013.06.002
    [9]WANG Ling, LUO Rui, WANG Buxuan. Experimental Investigations of Three-Dimensional Flow Field around the Head of Gas-Liquid Slug Flow in Microchannels[J]. Journal of Southwest Jiaotong University, 2013, 26(2): 223-229. doi: 10.3969/j.issn.0258-2724.2013.02.006
    [10] , ZHU Bing, SONG Suidi, TAN Changjian, . Numerical Simulation for Diffraction around Large-Diameter Circular Cylinder Subjected to Three-Dimension Wave[J]. Journal of Southwest Jiaotong University, 2012, 25(2): 224-229. doi: 10.3969/j.issn.0258-2724.2012.02.009
    [11]SHI Wanyuan, ZHANG Fengchao, TIAN Xiaohong, TSUKADA Takao. Phase Field Modeling of Internal Convection and Free Interface Deformation of Levitated Droplet of Molten Silicon[J]. Journal of Southwest Jiaotong University, 2012, 25(4): 692-697. doi: 10.3969/j.issn.0258-2724.2012.04.025
    [12]SUO Qifeng, LI Mingshui, HE Xiangdong. Effects of 3D Wind Flow on Drag Coefficients of Stay Cables[J]. Journal of Southwest Jiaotong University, 2010, 23(6): 882-887. doi: 10.3969/j.issn.0258-2724.2010.06.010
    [13]LILi, LIAOHai-li, LIQiao. Study on 3D Aerodynamic Admittance Function for Bridge Structures[J]. Journal of Southwest Jiaotong University, 2004, 17(2): 167-171.
    [14]LIGang-jun, CHEN Yong. Simulation of 3D Motion of Robots[J]. Journal of Southwest Jiaotong University, 2002, 15(3): 273-276.
    [15]LIUYong-jiang, HUHou-tian, BAI Zhi-yong. Aerodynamic Effect of Large-Scale and High-Speed Landslide[J]. Journal of Southwest Jiaotong University, 2002, 15(1): 6-9.
    [16]ZHANGAi-jun, ZHUChang-qian, WANGJi. CoordinatesTransformation of Engineering Drawings for 3D Reconstruction from Orthographic Views[J]. Journal of Southwest Jiaotong University, 2001, 14(1): 57-61.
    [17]SUGuo-shao, DUANHai-juan, YANLiu-bin. Mapped Infinite Element for Three-Dimensional Intercalations[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 162-165.
    [18]LUHui, SUNGuo-ying. Analysis of Three Dimensional Elastic-Plastic Stresses of Rail under Non-Ellipse Contact Area[J]. Journal of Southwest Jiaotong University, 2000, 13(4): 340-343.
    [19]NINGXiao-jun, LIXiao-zhen, QIANG Shi-zhong. A Study on Lateral Rigidity of Bridge Pier in High Speed Railway[J]. Journal of Southwest Jiaotong University, 2000, 13(1): 11-13.
  • Cited by

    Periodical cited type(17)

    1. 王卫东,高文生,龚维明,林毅峰,刘永超,吴江斌. 基础工程技术的发展与创新. 土木工程学报. 2025(02): 97-117 .
    2. 贺蔚,周红星,秦杭晓,曾庆林,张健,徐辉. 高雷诺数下倒虹吸闸墩绕流水力特性. 水电能源科学. 2024(04): 155-159 .
    3. 吴少玲,孔词. 北坑水库泄洪对下游高速公路大桥桥墩的影响分析. 安徽水利水电职业技术学院学报. 2024(06): 12-17+23 .
    4. 胡邵凯,杨万里,边莉,王浩,孔德祥,赵晋平. 基于混凝土塑性损伤模型的桥墩在快速水流作用下的损伤分析. 交通运输研究. 2023(01): 143-152 .
    5. 郑建,贾宏宇,吴炜昌,程维,邹作家,郑史雄. 急流冲击下大跨度连续刚构桥动力响应分析. 铁道标准设计. 2023(03): 121-125 .
    6. 吴春利,黄诗茗,李魁,顾正伟,黄晓明,张炳涛,杨润超. 基于数值仿真和统计分析的洪水作用下桥墩作用效应分析. 吉林大学学报(工学版). 2023(06): 1612-1620 .
    7. 杨光,冀楠,舒麟棹,钱志鹏,万德成. 防撞浮箱对桥墩绕流影响的数值研究. 水动力学研究与进展A辑. 2023(04): 528-534 .
    8. 卞晨杰,杜礼明,王尕平,于德壮. 风-浪-流耦合作用下跨海斜拉桥涡动力特性. 中国科技论文. 2023(10): 1128-1136 .
    9. 杨万理,秦军武,侯海林,吴文博,周凌远. 竹巴龙金沙江大桥水毁破坏机理. 西南交通大学学报. 2022(01): 120-128 . 本站查看
    10. 刘洋,徐毅,王茂枚,赵钢,王远. 方形桥墩紊动特性及尾涡区尺寸PIV试验. 水利水电科技进展. 2022(04): 55-60 .
    11. 华旭刚,邓武鹏,陈政清,唐煜. 水流作用下双圆柱墩混凝土梁桥的动力响应实测与数值模拟. 工程力学. 2021(01): 40-51 .
    12. 陈星宇,徐昕宇,郑晓龙,曾永平,李永乐. 中央开槽宽度对箱梁涡振特性的影响机理. 西南交通大学学报. 2021(02): 238-245 . 本站查看
    13. 郭辉,王明慧,李开兰,蒋树平,周勤. 复杂河道环境内水流冲击桥墩的数值模拟——以广安五福桥为例. 科学技术与工程. 2021(30): 13086-13094 .
    14. 魏凯,秦顺全,赵文玉,祝兵,徐国际. 桥梁水动力学2020年度研究进展. 土木与环境工程学报(中英文). 2021(S1): 31-42 .
    15. 陈一路,王贵. 基于通信特征分析的智能桥梁防撞偏航预警系统. 西安工程大学学报. 2021(06): 83-89 .
    16. 吴承伟,杨万理,王广俊. 错置双柱式桥墩三维流场及水流力特征研究. 水动力学研究与进展(A辑). 2020(03): 328-337 .
    17. 武守信,何亚东,江昕宇. 桥梁基础工程2019年度研究进展. 土木与环境工程学报(中英文). 2020(05): 159-167 .

    Other cited types(26)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0705101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 37.2 %FULLTEXT: 37.2 %META: 57.2 %META: 57.2 %PDF: 5.6 %PDF: 5.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.4 %其他: 11.4 %Harborton: 0.4 %Harborton: 0.4 %Seattle: 0.2 %Seattle: 0.2 %上海: 0.9 %上海: 0.9 %东莞: 0.4 %东莞: 0.4 %临汾: 0.4 %临汾: 0.4 %佛山: 0.2 %佛山: 0.2 %兰州: 0.4 %兰州: 0.4 %北京: 3.0 %北京: 3.0 %十堰: 0.2 %十堰: 0.2 %南京: 2.6 %南京: 2.6 %吉林: 0.2 %吉林: 0.2 %呼和浩特: 0.6 %呼和浩特: 0.6 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.4 %哥伦布: 0.4 %唐山: 0.4 %唐山: 0.4 %嘉兴: 0.4 %嘉兴: 0.4 %大连: 0.4 %大连: 0.4 %天津: 0.7 %天津: 0.7 %太原: 0.2 %太原: 0.2 %宣城: 0.7 %宣城: 0.7 %山景城: 0.2 %山景城: 0.2 %岳阳: 0.2 %岳阳: 0.2 %广州: 0.7 %广州: 0.7 %廊坊: 0.2 %廊坊: 0.2 %延安: 0.4 %延安: 0.4 %张家口: 1.3 %张家口: 1.3 %成都: 1.3 %成都: 1.3 %扬州: 0.2 %扬州: 0.2 %昆明: 0.4 %昆明: 0.4 %昌吉: 0.2 %昌吉: 0.2 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.9 %杭州: 1.9 %武汉: 2.4 %武汉: 2.4 %沈阳: 0.7 %沈阳: 0.7 %法兰克福: 0.2 %法兰克福: 0.2 %漯河: 0.9 %漯河: 0.9 %石家庄: 0.9 %石家庄: 0.9 %芒廷维尤: 13.8 %芒廷维尤: 13.8 %芝加哥: 1.3 %芝加哥: 1.3 %西宁: 41.0 %西宁: 41.0 %西安: 0.6 %西安: 0.6 %贵阳: 0.9 %贵阳: 0.9 %达州: 0.4 %达州: 0.4 %运城: 0.9 %运城: 0.9 %邯郸: 0.6 %邯郸: 0.6 %郑州: 0.4 %郑州: 0.4 %重庆: 0.7 %重庆: 0.7 %长沙: 1.9 %长沙: 1.9 %雷德蒙德: 0.2 %雷德蒙德: 0.2 %青岛: 0.9 %青岛: 0.9 %黔南: 0.2 %黔南: 0.2 %其他HarbortonSeattle上海东莞临汾佛山兰州北京十堰南京吉林呼和浩特哈尔滨哥伦布唐山嘉兴大连天津太原宣城山景城岳阳广州廊坊延安张家口成都扬州昆明昌吉朝阳杭州武汉沈阳法兰克福漯河石家庄芒廷维尤芝加哥西宁西安贵阳达州运城邯郸郑州重庆长沙雷德蒙德青岛黔南

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article views(672) PDF downloads(34) Cited by(43)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return