• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
XU Wensong, ZHAO Guangming, MENG Xiangrui, LI Yingming, CAI Jinlong, GAO Liang. Test Study on True-Triaxial Loading and Unloading for Marble with Unloaded Single Face[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 526-534. doi: 10.3969/j.issn.0258-2724.20180542
Citation: ZHANG Yu, ZHANG Dingli, XU Tong, XIONG Leijin. Analysis of Three-Dimensional Seepage Field and Prediction of Water Inflow in Excavation Face of Underwater Tunnels[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1260-1267. doi: 10.3969/j.issn.0258-2724.20200397

Analysis of Three-Dimensional Seepage Field and Prediction of Water Inflow in Excavation Face of Underwater Tunnels

doi: 10.3969/j.issn.0258-2724.20200397
  • Received Date: 24 Jun 2020
  • Rev Recd Date: 25 Nov 2020
  • Available Online: 25 Dec 2020
  • Publish Date: 25 Dec 2020
  • Formation water pressure and seepage volume in front of excavation face are important parameters of underwater tunnel projects, and also key indexes for designing the support force of excavation face and advanced water blocking and reinforcement parameters. Firstly, in view of the limitation in analyzing the 3D seepage field in front of the excavation face of underwater tunnels with the previous 2D seepage model, when building the three-dimensional seepage analytical model of the underwater tunnel, the seepage equipotential surface in front of the excavation face is considered as the space surface. Secondly, with the plane of the excavation surface as the boundary, the distribution function of water head in the half stratum space of all unexcavated areas is deduced to derive the calculation formulas of water seepage at the excavation face and pore water pressure in the front formation. Finally, the influence of factors on the water pressure and seepage in front of excavation face is analyzed, such as advanced reinforcement thickness and the relative value of permeability coefficient between soil and advanced reinforcement. The results show that, compared with the previous theoretical model of 2D seepage field in front of excavation face, the 3D analytical model can better reflect the spatial seepage pattern in front of excavation face, and the error between the calculation results of water inflow and water pressure is less than 5%; when the reinforcement range in front of excavation face is twice the tunnel diameter, and the relative permeability coefficient between the advanced reinforcement area and the stratum is set as 50, which is a safe and reasonable parameter for advanced water blocking and reinforcement.

     

  • [1]
    EL TANI M. Circular tunnel in a semi-infinite aquifer[J]. Tunnelling and Underground Space Technology, 2003, 18(1): 49-55. doi: 10.1016/S0886-7798(02)00102-5
    [2]
    GOODMAN R E, MOYE D G, SCHALKWYK A V, et al. Ground water inflow during tunnel driving[J]. Engineering Geology, 1965, 2(1): 39-56.
    [3]
    LEE I M, NAM S W. The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels[J]. Tunnelling and Underground Space Technology, 2001, 16(1): 31-40. doi: 10.1016/S0886-7798(01)00028-1
    [4]
    王建宇. 再谈隧道衬砌水压力[J]. 现代隧道技术,2003,40(3): 5-10. doi: 10.3969/j.issn.1009-6582.2003.03.002

    WANG Jianyu. Once more on hydraulic pressure upon lining[J]. Modern Tunnelling Technology, 2003, 40(3): 5-10. doi: 10.3969/j.issn.1009-6582.2003.03.002
    [5]
    王秀英,王梦恕,张弥. 计算隧道排水量及衬砌外水压力的一种简化方法[J]. 北方交通大学学报,2004,28(1): 8-10.

    WANG Xiuying, WANG Mengshu, ZHANG Mi. A simple method to calculate tunnel discharge and external water pressure on lining[J]. Journal of Northern Jiaotong University, 2004, 28(1): 8-10.
    [6]
    宋浩然. 钻爆法海底隧道突水机理及其应用[D]. 北京: 北京交通大学, 2015.
    [7]
    应宏伟,朱成伟,龚晓南. 考虑注浆圈作用水下隧道渗流场解析解[J]. 浙江大学学报(工学版),2016,50(6): 1018-1023.

    YING Hongwei, ZHU Chengwei, GONG Xiaonan. Analytic solution on seepage field of underwater tunnel considering grouting circle[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(6): 1018-1023.
    [8]
    LI P F, WANG F, FANG Q. Undrained analysis of ground reaction curves for deep tunnels in saturated ground considering the effect of ground reinforcement[J]. Tunnelling and Underground Space Technology, 2018, 71: 579-590. doi: 10.1016/j.tust.2017.11.001
    [9]
    刘维. 饱和成层土中盾构掘进面稳定理论性研究[D]. 杭州: 浙江大学, 2013.
    [10]
    曹利强,张顶立,李新宇,等. 浅埋盾构穿越渗透性地层时极限支护压力分析[J]. 西南交通大学学报,2019,54(3): 507-515. doi: 10.3969/j.issn.0258-2724.20180482

    CAO Liqiang, ZHANG Dingli, LI Xinyu, et al. Analysis of limit support pressure due to shield tunnelling with shallow overburden under seepage[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 507-515. doi: 10.3969/j.issn.0258-2724.20180482
    [11]
    VERRUIJT A, BOOKER J R. Complex variable analysis of Mindlin’s tunnel problem[C]//Development in Theoretical Geomechanics. Sydney: [s.n.], 2000: 3-22.
    [12]
    LI P F, WANG F, LONG Y Y, et al. Investigation of steady water inflow into a subsea grouted tunnel[J]. Tunnelling and Underground Space Technology, 2018, 80: 92-102. doi: 10.1016/j.tust.2018.06.003
    [13]
    沙金煊. 不完整井渗流的近似计算[J]. 岩土工程学报,1985,7(5): 36-48. doi: 10.3321/j.issn:1000-4548.1985.05.004

    SHA Jinxuan. The approximate calculation of partially pentratinf well[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(5): 36-48. doi: 10.3321/j.issn:1000-4548.1985.05.004
    [14]
    吴一匡. 不完整井的非定常渗流计算[J]. 浙江水利科技,1987,15(2): 20-22.
    [15]
    王旭东,殷宗泽,宰金珉,等. 柱坐标系下地下水非稳定流模拟的有限层法[J]. 岩土工程学报,2009,31(1): 15-20. doi: 10.3321/j.issn:1000-4548.2009.01.002

    WANG Xudong, YIN Zongze, ZAI Jinmin, et al. Finite layer method for numerical simulation of unsteady groundwater flow in cylindrical coordinate system[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 15-20. doi: 10.3321/j.issn:1000-4548.2009.01.002
    [16]
    BEAR J. Hydraulics of Groundwater[M]. New York: Mc Graw-Hill, 1979.
    [17]
    张庆松,王德明,李术才,等. 断层破碎带隧道突水突泥模型试验系统研制与应用[J]. 岩土工程学报,2017,39(3): 417-426. doi: 10.11779/CJGE201703004

    ZHANG Qingsong, WANG Deming, LI Shucai, et al. Development and application of model test system for inrush of water and mud of tunnel in fault rupture zone[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 417-426. doi: 10.11779/CJGE201703004
    [18]
    ZHAO X, YANG X H. Experimental study on water inflow characteristics of tunnel in the fault fracture zone[J]. Arabian Journal of Geosciences, 2019, 12(13): 1-14.
    [19]
    管泽英,杨朝帅. 超前预注浆技术在高压富水岩溶隧道中的优化应用[J]. 隧道建设(中英文),2018,38(增刊1): 136-141.

    GUAN Zeying, YANG Chaoshuai. Optimal application of advance pre-grouting technology to high-pressure water-rich Karst tunnel[J]. Tunnel Construction, 2018, 38(S1): 136-141.
  • Relative Articles

    [1]ZHU He, YUAN Ming, GUO Xin. Finite Element Analysis on Layered Mechanical Properties of Carbon Fiber Wires Under Influence of Temperature[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 700-711. doi: 10.3969/j.issn.0258-2724.20210686
    [2]JI Wei, SHAO Tianyan. Finite Element Model Updating of Box Girder Bridges with Corrugated Steel Webs[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 1-11. doi: 10.3969/j.issn.0258-2724.20191198
    [3]WU Yanbin, HUANG Fanglin. Refined Finite Element Modeling Methodof Spatial Prestressed Steel Beam[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1082-1087. doi: 10.3969/j.issn.0258-2724.2017.06.007
    [4]GAO Qing, . THE DAMAGE-COUPLED TIME-DEPENDENT MULTIAXIAL THEORETICAL MODEL: II. THE ENGINEERING APPLICABILITY OF FINITE ELEMENT IMPLEMENTATION[J]. Journal of Southwest Jiaotong University, 2012, 25(2): 230-235. doi: 10.3969/j.issn.0258-2724.2012.02.010
    [5]LIANG Shangming, YAN Xijiang, WANG Xianzhou. Coupled Finite Element Thermal-Mechanical Analysis of Gravity Support System of International Thermonuclear Experimental Reactor[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 738-742.
    [6]LI Ruiping, ZHOU Ning, MEI Guiming, ZHANG Weihua. Finite Element Model for Catenary in Initial Equilibrium State[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 732-737.
    [7]MAOJian-qiang. Finite Element Method for Tunnel with Prefabricated Lining[J]. Journal of Southwest Jiaotong University, 2004, 17(4): 423-427.
    [8]SUNJi-ping, ZHANG Chang-sen. Effect of Crowd on Propagation Characteristic of Electromagnetic Waves in Limited Underground Space[J]. Journal of Southwest Jiaotong University, 2003, 16(4): 403-407.
    [9]FUHai-ying, HE Chang-rong, CHEN Qun. 2-D Finite Element Analysis of Prestressed Anchorage Sheet-Pile Wall[J]. Journal of Southwest Jiaotong University, 2003, 16(4): 389-392.
    [10]ZHANG Xue-ling, XU Yan-shen. Data Exchange Between CAD and Finite Element Models in Modular Design[J]. Journal of Southwest Jiaotong University, 2003, 16(5): 584-587.
    [11]YUAN Feng, CHEN Qiu. Research on FEM Metacomputing Environment DPFEM[J]. Journal of Southwest Jiaotong University, 2001, 14(6): 655-658.
    [12]LIUChang-hong, CHENQiu. ANew Solution to Structural Fuzzy Finite Element Equations Based onMonosource Fuzziness[J]. Journal of Southwest Jiaotong University, 2001, 14(1): 84-87.
    [13]DUZan-hua. Experimental Research on Limit Torque of RC Members under the Combined Action of Axial Tension and Bending Twisting Moment[J]. Journal of Southwest Jiaotong University, 2000, 13(2): 129-132.
  • Cited by

    Periodical cited type(2)

    1. 吴迪,李艾文,李丹,贾龙,韦学英,吴建建. 岩溶路基加筋防塌治理的简化设计方法. 中国岩溶. 2023(03): 538-547 .
    2. 陈玲玲,马露,王志远. 动荷载下桩承式路堤中加筋体的作用机理. 宜春学院学报. 2020(09): 53-56+102 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 35.0 %FULLTEXT: 35.0 %META: 63.0 %META: 63.0 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.3 %其他: 7.3 %其他: 0.3 %其他: 0.3 %上海: 1.0 %上海: 1.0 %东京: 0.8 %东京: 0.8 %东莞: 0.5 %东莞: 0.5 %临汾: 0.3 %临汾: 0.3 %九江: 0.3 %九江: 0.3 %保定: 0.3 %保定: 0.3 %北京: 3.5 %北京: 3.5 %十堰: 0.7 %十堰: 0.7 %南京: 0.7 %南京: 0.7 %南昌: 0.2 %南昌: 0.2 %南通: 0.2 %南通: 0.2 %台州: 0.2 %台州: 0.2 %哥伦布: 0.5 %哥伦布: 0.5 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 2.2 %天津: 2.2 %宣城: 0.7 %宣城: 0.7 %广州: 0.2 %广州: 0.2 %延安: 0.2 %延安: 0.2 %张家口: 2.0 %张家口: 2.0 %惠州: 0.2 %惠州: 0.2 %成都: 2.5 %成都: 2.5 %扬州: 1.5 %扬州: 1.5 %无锡: 0.3 %无锡: 0.3 %杭州: 1.2 %杭州: 1.2 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 0.7 %武汉: 0.7 %沈阳: 0.2 %沈阳: 0.2 %泰州: 0.7 %泰州: 0.7 %洛阳: 0.2 %洛阳: 0.2 %深圳: 0.3 %深圳: 0.3 %清远: 0.2 %清远: 0.2 %温州: 0.5 %温州: 0.5 %湛江: 0.3 %湛江: 0.3 %漯河: 7.3 %漯河: 7.3 %石家庄: 2.3 %石家庄: 2.3 %石河子: 0.2 %石河子: 0.2 %芒廷维尤: 15.4 %芒廷维尤: 15.4 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.2 %苏州: 0.2 %西宁: 37.5 %西宁: 37.5 %西安: 0.3 %西安: 0.3 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.3 %贵阳: 0.3 %运城: 0.8 %运城: 0.8 %邯郸: 0.8 %邯郸: 0.8 %郑州: 0.3 %郑州: 0.3 %重庆: 0.5 %重庆: 0.5 %锦州: 0.2 %锦州: 0.2 %长沙: 1.8 %长沙: 1.8 %青岛: 0.2 %青岛: 0.2 %其他其他上海东京东莞临汾九江保定北京十堰南京南昌南通台州哥伦布嘉兴天津宣城广州延安张家口惠州成都扬州无锡杭州格兰特县武汉沈阳泰州洛阳深圳清远温州湛江漯河石家庄石河子芒廷维尤芝加哥苏州西宁西安诺沃克贵阳运城邯郸郑州重庆锦州长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article views(602) PDF downloads(40) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return