Citation: | ZHANG Yu, ZHANG Dingli, XU Tong, XIONG Leijin. Analysis of Three-Dimensional Seepage Field and Prediction of Water Inflow in Excavation Face of Underwater Tunnels[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1260-1267. doi: 10.3969/j.issn.0258-2724.20200397 |
Formation water pressure and seepage volume in front of excavation face are important parameters of underwater tunnel projects, and also key indexes for designing the support force of excavation face and advanced water blocking and reinforcement parameters. Firstly, in view of the limitation in analyzing the 3D seepage field in front of the excavation face of underwater tunnels with the previous 2D seepage model, when building the three-dimensional seepage analytical model of the underwater tunnel, the seepage equipotential surface in front of the excavation face is considered as the space surface. Secondly, with the plane of the excavation surface as the boundary, the distribution function of water head in the half stratum space of all unexcavated areas is deduced to derive the calculation formulas of water seepage at the excavation face and pore water pressure in the front formation. Finally, the influence of factors on the water pressure and seepage in front of excavation face is analyzed, such as advanced reinforcement thickness and the relative value of permeability coefficient between soil and advanced reinforcement. The results show that, compared with the previous theoretical model of 2D seepage field in front of excavation face, the 3D analytical model can better reflect the spatial seepage pattern in front of excavation face, and the error between the calculation results of water inflow and water pressure is less than 5%; when the reinforcement range in front of excavation face is twice the tunnel diameter, and the relative permeability coefficient between the advanced reinforcement area and the stratum is set as 50, which is a safe and reasonable parameter for advanced water blocking and reinforcement.
[1] |
EL TANI M. Circular tunnel in a semi-infinite aquifer[J]. Tunnelling and Underground Space Technology, 2003, 18(1): 49-55. doi: 10.1016/S0886-7798(02)00102-5
|
[2] |
GOODMAN R E, MOYE D G, SCHALKWYK A V, et al. Ground water inflow during tunnel driving[J]. Engineering Geology, 1965, 2(1): 39-56.
|
[3] |
LEE I M, NAM S W. The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels[J]. Tunnelling and Underground Space Technology, 2001, 16(1): 31-40. doi: 10.1016/S0886-7798(01)00028-1
|
[4] |
王建宇. 再谈隧道衬砌水压力[J]. 现代隧道技术,2003,40(3): 5-10. doi: 10.3969/j.issn.1009-6582.2003.03.002
WANG Jianyu. Once more on hydraulic pressure upon lining[J]. Modern Tunnelling Technology, 2003, 40(3): 5-10. doi: 10.3969/j.issn.1009-6582.2003.03.002
|
[5] |
王秀英,王梦恕,张弥. 计算隧道排水量及衬砌外水压力的一种简化方法[J]. 北方交通大学学报,2004,28(1): 8-10.
WANG Xiuying, WANG Mengshu, ZHANG Mi. A simple method to calculate tunnel discharge and external water pressure on lining[J]. Journal of Northern Jiaotong University, 2004, 28(1): 8-10.
|
[6] |
宋浩然. 钻爆法海底隧道突水机理及其应用[D]. 北京: 北京交通大学, 2015.
|
[7] |
应宏伟,朱成伟,龚晓南. 考虑注浆圈作用水下隧道渗流场解析解[J]. 浙江大学学报(工学版),2016,50(6): 1018-1023.
YING Hongwei, ZHU Chengwei, GONG Xiaonan. Analytic solution on seepage field of underwater tunnel considering grouting circle[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(6): 1018-1023.
|
[8] |
LI P F, WANG F, FANG Q. Undrained analysis of ground reaction curves for deep tunnels in saturated ground considering the effect of ground reinforcement[J]. Tunnelling and Underground Space Technology, 2018, 71: 579-590. doi: 10.1016/j.tust.2017.11.001
|
[9] |
刘维. 饱和成层土中盾构掘进面稳定理论性研究[D]. 杭州: 浙江大学, 2013.
|
[10] |
曹利强,张顶立,李新宇,等. 浅埋盾构穿越渗透性地层时极限支护压力分析[J]. 西南交通大学学报,2019,54(3): 507-515. doi: 10.3969/j.issn.0258-2724.20180482
CAO Liqiang, ZHANG Dingli, LI Xinyu, et al. Analysis of limit support pressure due to shield tunnelling with shallow overburden under seepage[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 507-515. doi: 10.3969/j.issn.0258-2724.20180482
|
[11] |
VERRUIJT A, BOOKER J R. Complex variable analysis of Mindlin’s tunnel problem[C]//Development in Theoretical Geomechanics. Sydney: [s.n.], 2000: 3-22.
|
[12] |
LI P F, WANG F, LONG Y Y, et al. Investigation of steady water inflow into a subsea grouted tunnel[J]. Tunnelling and Underground Space Technology, 2018, 80: 92-102. doi: 10.1016/j.tust.2018.06.003
|
[13] |
沙金煊. 不完整井渗流的近似计算[J]. 岩土工程学报,1985,7(5): 36-48. doi: 10.3321/j.issn:1000-4548.1985.05.004
SHA Jinxuan. The approximate calculation of partially pentratinf well[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(5): 36-48. doi: 10.3321/j.issn:1000-4548.1985.05.004
|
[14] |
吴一匡. 不完整井的非定常渗流计算[J]. 浙江水利科技,1987,15(2): 20-22.
|
[15] |
王旭东,殷宗泽,宰金珉,等. 柱坐标系下地下水非稳定流模拟的有限层法[J]. 岩土工程学报,2009,31(1): 15-20. doi: 10.3321/j.issn:1000-4548.2009.01.002
WANG Xudong, YIN Zongze, ZAI Jinmin, et al. Finite layer method for numerical simulation of unsteady groundwater flow in cylindrical coordinate system[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 15-20. doi: 10.3321/j.issn:1000-4548.2009.01.002
|
[16] |
BEAR J. Hydraulics of Groundwater[M]. New York: Mc Graw-Hill, 1979.
|
[17] |
张庆松,王德明,李术才,等. 断层破碎带隧道突水突泥模型试验系统研制与应用[J]. 岩土工程学报,2017,39(3): 417-426. doi: 10.11779/CJGE201703004
ZHANG Qingsong, WANG Deming, LI Shucai, et al. Development and application of model test system for inrush of water and mud of tunnel in fault rupture zone[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 417-426. doi: 10.11779/CJGE201703004
|
[18] |
ZHAO X, YANG X H. Experimental study on water inflow characteristics of tunnel in the fault fracture zone[J]. Arabian Journal of Geosciences, 2019, 12(13): 1-14.
|
[19] |
管泽英,杨朝帅. 超前预注浆技术在高压富水岩溶隧道中的优化应用[J]. 隧道建设(中英文),2018,38(增刊1): 136-141.
GUAN Zeying, YANG Chaoshuai. Optimal application of advance pre-grouting technology to high-pressure water-rich Karst tunnel[J]. Tunnel Construction, 2018, 38(S1): 136-141.
|