• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 31 Issue 6
Dec.  2018
Turn off MathJax
Article Contents
ZHONG Yongli, YAN Zhitao, WANG Lingzhi, YOU Yi. Large Eddy Simulation of Unsteady Downburst Outflow Based on Wall Jet Model[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1179-1186. doi: 10.3969/j.issn.0258-2724.2018.06.013
Citation: ZHONG Yongli, YAN Zhitao, WANG Lingzhi, YOU Yi. Large Eddy Simulation of Unsteady Downburst Outflow Based on Wall Jet Model[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1179-1186. doi: 10.3969/j.issn.0258-2724.2018.06.013

Large Eddy Simulation of Unsteady Downburst Outflow Based on Wall Jet Model

doi: 10.3969/j.issn.0258-2724.2018.06.013
  • Received Date: 12 May 2017
  • Publish Date: 01 Dec 2018
  • The feasibility of a large-scale experiment for downburst in a boundary layer wind tunnel was investigated. Large eddy simulation (LES) was employed to investigate the characteristics of stationary and travelling downburst using the impinging jet and wall jet methods, respectively. The velocity profiles from LES were compared with those obtained from the Wood model, the Oseguera model, the Victory model, and the classical wall jet experiment to verify the reasonableness of the two methods. Then, three time functions of the inlet velocity were used to obtain similar time series of the full-scale data. The results show that the fully-developed velocity profiles of the wall jet cohere with those of the three theoretical models and the classical wall jet experiment. When the translational velocity is 15% of the impinging jet velocity, the maximum horizontal wind speed increased by 15.8% compared to that of the stationary impinging jet, while when the velocity of co-flow is 19.2% of the wall jet velocity, the maximum horizontal wind speed increased by 16.9% compared to that of the wall jet without co-flow. The stationary downburst can be appropriately simulated using the wall jet model without co-flow, while the travelling downburst can be effectively simulated using the wall jet model with co- flow. The results from large eddy simulation (LES) and data obtained from Andrews AFB downburst are in good agreement. The unsteady characteristics of downburst outflow can be perfectly reproduced by the time functions of the velocity inlet.

     

  • loading
  • FUJITA T T, WAKIMOTO R M. Five scales of airflow associated with a series of downbursts on 16 July 1980[J]. Monthly Weather Review, 1981, 109(7): 1438-1456 doi: 10.1175/1520-0493(1981)109<1438:FSOAAW>2.0.CO;2
    DEMPSEY D, WHITE H. Winds wreak havoc on lines[J]. Transmission and Distribution World, 1996, 48(6): 32-37
    PROCTOR F H. Numerical simulations of an isolated microburst. part I:dynamics and structure[J]. Journal of the Atmospheric Sciences, 1988, 45(21): 3137-3160 doi: 10.1175/1520-0469(1988)045<3137:NSOAIM>2.0.CO;2
    LETCHFORD C W, MANS C, CHAY M T. Thunderstorms-their importance in wind engineering (a case for the next generation wind tunnel)[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2002, 90(12): 1415-1433
    HOLMES J D. Physical modeling of thunderstorm downdrafts by wind tunnel jet[C]//Proceedings of the Second AWES Workshop. Melbourne: Monash University, 1992: 29-32
    CASSAR R. Simulation of a thunderstorm downdraft by a wind tunnel jet [R]. Australia: Summer vacation report, 1992
    LETCHFORD C W, CHAY M T. Pressure distributions on a cube in a simulated thunderstorm downburst-Part A:stationary downburst observations[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2002, 90(7): 711-732
    LETCHFORD C W, CHAY M T. Pressure distributions on a cube in a simulated thunderstorm downburst. Part B:moving downburst observations[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2002, 90(7): 733-753
    MASON M S, LETCHFORD C W, JAMES D L. Pulsed wall jet simulation of a stationary thunderstorm downburst,part A:physical structure and flow field characterization[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2005, 93(7): 557-580
    吉柏锋,瞿伟廉. 下击暴流作用下高层建筑物表面风压分布特性[J]. 华中科技大学学报(自然科学版),2012,40(9): 89-94

    JI Baifeng, QU Weilian. Mean wind pressure distribution characteristics on tall building under downburst[J]. Journal of Huazhong University of Science & Technology (Natural Science Edition), 2012, 40(9): 89-94
    李宏海,欧进萍. 下击暴流作用下建筑物表面风压分布模拟[J]. 工程力学,2011,28(增刊2): 147-151

    LI Honghai, OU Jinping. Numerical simulation of the wind-induced pressure distribution on building surface in downburst[J]. Engineering Mechanics, 2011, 28(Sup.2): 147-151
    邹鑫,汪之松,李正良. 稳态冲击风作用下高层建筑风荷载特性试验研究[J]. 湖南大学学报(自然科学版),2016,43(1): 29-36 doi: 10.3969/j.issn.1674-2974.2016.01.004

    ZOU Xin, WANG Zhisong, LI Zhengliang. Experimental study on wind load characteristic of high-rise building in stationary downbursts[J]. Journal of Hunan University (Natural Sciences Edition), 2016, 43(1): 29-36 doi: 10.3969/j.issn.1674-2974.2016.01.004
    FUJITA T T. The downburst: microburst and macroburst: report of projects NIMROD and JAWS[R]. Chicago: Satellite and Mesometeorology Research Project, 1985
    HJELMFELT M R. Structure and life cycle of microburst outflows observed in Colorado[J]. Journal of Applied Meteorology, 1988, 27(8): 900-927 doi: 10.1175/1520-0450(1988)027<0900:SALCOM>2.0.CO;2
    LIN W E, SAVORY E. Large-scale quasi-steady modelling of a downburst outflow using a slot jet[J]. Wind & Structures An International Journal, 2006, 9(6): 419-440
    王超,汪之松,李正良. 冲击射流与壁面射流风剖面特征比较和影响因素参数化分析[J]. 工程力学,2015,32(11): 86-93 doi: 10.6052/j.issn.1000-4750.2014.04.0294

    WANG Chao, WANG Zhisong, LI Zhengliang. Comparison and parametric analysis of wind profile characteristics of imping jet and wall jet[J]. Engineering Mechanics, 2015, 32(11): 86-93 doi: 10.6052/j.issn.1000-4750.2014.04.0294
    KIM J, HANGAN H. Numerical simulations of impinging jets with application to downbursts[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2007, 95(4): 279-298
    GLAUERT M B. The wall jet[J]. Journal of Fluid Mechanics, 1956, 1(6): 625-643 doi: 10.1017/S002211205600041X
    ERIKSSON J G, KARLSSON R I, PERSSON J. An experimental study of a two-dimensional plane turbulent wall jet[J]. Experiments in Fluids, 1998, 25(1): 50-60 doi: 10.1007/s003480050207
    VICROY D D. Assessment of microburst models for downdraft estimation[J]. Journal of Aircraft, 1992, 29: 1043-1048 doi: 10.2514/3.46282
    WOOD G S, KWOK K C S, MOTTERAM N A, et al. Physical and numerical modelling of thunderstorm downbursts[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2001, 89(6): 535-552
    OSEGUERA R M, BOWLES R L. A simple analytic 3-dimensional downburst model based on boundary layer stagnation flow [R]. Virginia: Langley Research Center, National Aeronautics and Space Administration, 1988
    ELAWADY A, ABOSHOSHA H, DAMATTY A E, et al. Aero-elastic testing of multi-spanned transmission line subjected to downbursts[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2017, 169: 194-216
    CHEN L, LETCHFORD C W. Parametric study on the along-wind response of the CAARC building to downbursts in the time domain[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2004, 92(9): 703-724
    MCINTYRE R P. The effect of inlet geometry on the development of a plane wall jet [D]. London: The University of Western Ontario, 2011
    瞿伟廉, 吉柏锋. 下击暴流的形成与扩散及其对输电线路的灾害作用[M]. 北京: 科学出版社, 2013: 77-90
    WILSON J W, ROBERTS R D, KESSINGER C, et al. Microburst wind structure and evaluation of Doppler radar for airport wind shear detection[J]. Journal of Applied Meteorology, 1984, 23(6): 898-915 doi: 10.1175/1520-0450(1984)023<0898:MWSAEO>2.0.CO;2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views(567) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return