• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
WANG Ping, GAO Tianci, WANG Xin, YANG Cuiping, WANG Yuan. Smoothness Estimation of Super-large Bridges in Railway Line Based on Fitting Railway Plane and Profile[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 231-237, 272. doi: 10.3969/j.issn.0258-2724.20180295
Citation: DAI Zhiyuan, LI Tian, ZHANG Weihua, ZHANG Jiye. Effect of Aerodynamic Wings on Lift Force Characteristics of High-Speed Maglev Train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 498-505. doi: 10.3969/j.issn.0258-2724.20210855

Effect of Aerodynamic Wings on Lift Force Characteristics of High-Speed Maglev Train

doi: 10.3969/j.issn.0258-2724.20210855
  • Received Date: 02 Nov 2021
  • Rev Recd Date: 28 Dec 2021
  • Publish Date: 14 Jan 2022
  • Maglev trains are subjected to great aerodynamic lift force when running at high speeds, especially the tail car, which may deteriorate the suspension performance and even cause the suspension control system to fail. All these will affect the ride comfort and operation safety of high-speed maglev trains. Therefore, it is urgent to study and improve the lift force characteristics of the tail car of high-speed maglev trains. To this end, a numerical simulation of the high-speed maglev train is carried out in comparison with a wind tunnel test, and the surface pressure coefficient of the train obtained through numerical simulation is in good agreement with the wind tunnel test results. Then, aerodynamic wings (aero-wings) are installed to improve the aerodynamic lift force performance of the tail car, and the influence of the angle and number of the aero-wings on the aerodynamic characteristics of the tail car is studied. The results show that the aerodynamic lift force of the wing decreases with the increase of angle when only one is installed, but the aerodynamic lift force of the tail car decreases first and then increases. Moreover, the lift force of the tail car is the smallest when the aero-wing angle is 12.5°. Compared with the original maglev train, the aerodynamic lift force coefficient of the winged train is reduced by 3.9%, while the resistance of the aero-wing and the tail car is slightly increased. On the basis that the tangent angle between the aero-wing and the car body remains unchanged, multiple 12.5° aero-wings are installed on the tail car. The aerodynamic resistance of the aero-wings at different positions is basically the same, and the aerodynamic resistance of the tail car increase as the number of aero-wings increases. However, the aerodynamic lift force of the aero-wing at different positions is different, which decreases toward the tip of the nose. The aerodynamic lift force of the tail car first decreases with the increase of the aero-wing number and then stabilizes. Finally, the aerodynamic performance of the maglev train with two aero-wings is found relatively better. Compared with the original maglev train, the aerodynamic lift force of the tail car is reduced by 4.6%, and the resistance of the whole vehicle is only increased by 1.4%.

     

  • [1]
    邓自刚,张勇,王博,等. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报,2019,54(5): 1063-1072. doi: 10.3969/j.issn.0258-2724.20180204

    DENG Zhigang, ZHANG Yong, WANG Bo, et al. Present situation and prospect of evacuated tube transportation system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1063-1072. doi: 10.3969/j.issn.0258-2724.20180204
    [2]
    王家素,王素玉. 高温超导磁悬浮列车研究综述[J]. 电气工程学报,2015,10(11): 1-10. doi: 10.11985/2015.11.001

    WANG Jiasu, WANG Suyu. High temperature superconducting maglev train[J]. Journal of Electrical Engineering, 2015, 10(11): 1-10. doi: 10.11985/2015.11.001
    [3]
    DONG F L, HUANG Z, HAO L N, et al. An on-board 2G HTS magnets system with cooling-power-free and persistent-current operation for ultrahigh speed superconducting maglevs[J]. Scientific Reports, 2019, 9(1): 1-12.
    [4]
    ZHOU P, LI T, ZHAO C F, et al. Numerical study on the flow field characteristics of the new high-speed maglev train in open air[J]. Journal of Zhejiang University−SCIENCE A, 2020, 21(5): 366-381. doi: 10.1631/jzus.A1900412
    [5]
    沈志云. 关于我国发展真空管道高速交通的思考[J]. 西南交通大学学报,2005,40(2): 133-137. doi: 10.3969/j.issn.0258-2724.2005.02.001

    SHEN Zhiyun. On developing high-speed evacuated tube transportation in China[J]. Journal of Southwest Jiaotong University, 2005, 40(2): 133-137. doi: 10.3969/j.issn.0258-2724.2005.02.001
    [6]
    翟婉明,赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报,2016,51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001

    ZHAI Wanming, ZHAO Chunfa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001
    [7]
    丁叁叁,姚拴宝,陈大伟. 高速磁浮列车气动升力特性[J]. 机械工程学报,2020,56(8): 228-234. doi: 10.3901/JME.2020.08.228

    DING Sansan, YAO Shuanbao, CHEN Dawei. Aerodynamic lift force of high-speed maglev train[J]. Journal of Mechanical Engineering, 2020, 56(8): 228-234. doi: 10.3901/JME.2020.08.228
    [8]
    李人宪,刘应清,翟婉明. 高速磁悬浮列车纵向及垂向气动力数值分析[J]. 中国铁道科学,2004,25(1): 8-12. doi: 10.3321/j.issn:1001-4632.2004.01.002

    LI Renxian, LIU Yingqing, ZHAI Wanming. Numerical analysis of aerodynamic force in longitudinal and vertical direction for high-speed maglev train[J]. China Railway Science, 2004, 25(1): 8-12. doi: 10.3321/j.issn:1001-4632.2004.01.002
    [9]
    刘堂红,田红旗,王承尧. 不同磁浮列车外形的气动性能比较[J]. 国防科技大学学报,2006,28(3): 94-98. doi: 10.3969/j.issn.1001-2486.2006.03.020

    LIU Tanghong, TIAN Hongqi, WANG Chenyao. Aerodynamic performance comparison of several kind of nose shape of maglev train[J]. Journal of National University of Defense Technology, 2006, 28(3): 94-98. doi: 10.3969/j.issn.1001-2486.2006.03.020
    [10]
    舒信伟,谷传纲,梁习锋,等. 高速磁浮列车气动阻力性能数值模拟与参数化评估[J]. 交通运输工程学报,2006,6(2): 6-10. doi: 10.3321/j.issn:1671-1637.2006.02.002

    SHU Xinwei, GU Chuangang, LIANG Xifeng, et al. Numerical simulation and parameterized investigation of aerodynamic drag performances of high-speed maglev trains[J]. Journal of Traffic and Transportation Engineering, 2006, 6(2): 6-10. doi: 10.3321/j.issn:1671-1637.2006.02.002
    [11]
    SUN Z X, WANG M Y, WEI L Y, et al. Aerodynamic shape optimization of an urban maglev train[J]. Acta Mechanica Sinica, 2021, 37(5): 954-969.
    [12]
    毕海权,雷波,张卫华. 自然风对高速磁浮列车气动特性的影响[J]. 中国铁道科学,2007,28(2): 67-72.

    BI Haiquan, LEI Bo, ZHANG Weihua. Effects of natural wind on aerodynamic characteristics of high-speed maglev train[J]. China Railway Science, 2007, 28(2): 67-72.
    [13]
    梁习锋,沈娴雅. 环境风与列车交会耦合作用下磁浮列车横向气动性能[J]. 中南大学学报(自然科学版),2007,38(4): 751-757. doi: 10.3969/j.issn.1672-7207.2007.04.031

    LIANG Xifeng, SHEN Xianya. Lateral aerodynamic performances of maglev train when two trains meet with wind blowing[J]. Journal of Central South University (Science and Technology), 2007, 38(4): 751-757. doi: 10.3969/j.issn.1672-7207.2007.04.031
    [14]
    LI T, QIN D, ZHANG J Y. Effect of RANS turbulence model on aerodynamic behavior of trains in crosswind[J]. Chinese Journal of Mechanical Engineering, 2019, 32(5): 85-96. doi: 10.1186/s10033-019-0402-2
    [15]
    LI T, DAI Z Y, YU M G, et al. Numerical investigation on the aerodynamic resistances of double-unit trains with different gap lengths[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 549-560. doi: 10.1080/19942060.2021.1895321
  • Relative Articles

    [1]JIA Chaojun, CHEN Fanlei, LEI Mingfeng, HUANG Juan, SHI Chenghua, LIU Di. Determination Method of Rock Strength Based on Digital Drilling Parameters[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230328
    [2]HOU Chao, JIN Xiaoguang, HE Jie, FANG Zhiyuan. Freeze-Thaw Damage Characteristics of Anhydrite Rock Pore Structures Based on Nuclear Magnetic Resonance Technology[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230314
    [3]LIANG Jiguan, HUANG Linchong, MA Jianjun, CHEN Wanxian. Comparison of Stress-Dilatancy Rules and Research on Stress-Dilatancy Rule for Rocks[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230231
    [4]WU Hainan, XIE Qiang, LI Yue, WU Minger, YAN Cong. Theoretical Analysis and Experimental Study of T-Shaped Retrofitting Schemes of Diagonal Members for Transmission Towers[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240435
    [5]LI Yue, XIE Qiang, ZHANG Xin, ZHANG Jian. Cascading Failure Analysis of Transmission Tower–Line System Under Strong Wind[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 423-430. doi: 10.3969/j.issn.0258-2724.20220619
    [6]LI Jin, SHI Yuefeng, XIAO Xin, LOU Liangwei, CAI Degou, XIAO Feipeng. Freeze-Thaw Damage Evolution Model of Asphalt Concrete for Waterproofing Layer in High-Speed Railways[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 281-288. doi: 10.3969/j.issn.0258-2724.20220335
    [7]LIN Pengzhen, WEI Yapeng, QIAO Yewei. Interfacial Stress and Failure Criteria of Steel Structure Coatings Under Wind-Sand Erosion[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 236-243. doi: 10.3969/j.issn.0258-2724.20210189
    [8]FENG Bo, LIU Qing, QIAN Yongjiu. Durability Analysis of High-Performance Concrete Under Chloride Salt Erosion and Freeze-Thaw Cycles[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1083-1089. doi: 10.3969/j.issn.0258-2724.20220035
    [9]WANG Zhaonan, ZHANG Yuanhai. Distortion Effect of Single Box Double-Cell Box Girders with Rectangular Cross Section[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1122-1129. doi: 10.3969/j.issn.0258-2724.20200813
    [10]LIU Youneng, HUANG Runqiu, LIU Enlong, LIAO Mengke. Influence of Freezing-Thawing Cycles on Mechanical Properties of Tailing Soil at Yunnan-Guizhou Plateau[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1052-1059. doi: 10.3969/j.issn.0258-2724.20180520
    [11]YAN Qixiang, LI Binjia, CHEN Hang, ZHANG Weilie, DENG Zhixin. Failure and Parametric Analysis of Shield Tunnel Bolts under Impact Load[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 23-31, 38. doi: 10.3969/j.issn.0258-2724.20160637
    [12]LIAO Ping, XIAO Lin, WEI Xing, ZHAO Renda, TANG Jishun. Fatigue Life Prediction and Parameter Analysis of Girder New Detail[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 639-644. doi: 10.3969/j.issn.0258-2724.2016.04.006
    [13]XU Jiang, LI Shuchun, LIU Yanbao, LI Kegang. Damage Constitutive Model of Rock Based on Drucker-Prager Criterion[J]. Journal of Southwest Jiaotong University, 2007, 20(3): 278-282.
    [14]ZHENG Jia-shu, YUZhi-xiang. Analysis of Modal Properties of Cable-Net Structures[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 58-63.
    [15]FAN Li-li, WUNa, MA Yue. Parameter Analyses in the Model of Profit Sharing and Valuation of Technical Assets[J]. Journal of Southwest Jiaotong University, 2002, 15(6): 693-697.
    [16]FengXingqiao, Cao Fuen. Brazil Test of Rocks with Bearing Plates of Press[J]. Journal of Southwest Jiaotong University, 1999, 12(3): 337-342.
    [17]Jiang Chongx, Xie Qian. Real-Time Observation and Analysis of Meso-Fracture Behavior of Marble Samples[J]. Journal of Southwest Jiaotong University, 1999, 12(1): 89-92.
  • Cited by

    Periodical cited type(8)

    1. 严先萃,陈文,蔡镇羽,高帅,马天宇,刘向阳. 疲劳混凝土硫酸盐侵蚀抗压强度演化规律及预测模型. 常州大学学报(自然科学版). 2025(01): 68-75+92 .
    2. 李振中,马晨,龚博,李辉,皮振宇,徐名凤,周健. 高抗折矿渣硫铝酸盐水泥混凝土抗疲劳性能研究. 市政技术. 2024(03): 164-170+205 .
    3. 程思嫄,陈代果,古巍. 氧化石墨烯改性水泥基注浆材料的制备及力学性能研究. 功能材料. 2023(02): 2153-2158 .
    4. 蒋明慧,刘贵文,薛暄译. 聚丙烯纤维混凝土在腐蚀-疲劳耦合作用下耐久性性能试验分析. 混凝土. 2023(03): 163-165+170 .
    5. 胡晴,焦北辰. 硅酸盐水泥混凝土路面结构设计. 交通世界. 2023(34): 81-83 .
    6. 游帆,念梦飞,郑建岚,罗素蓉. 再生骨料混凝土弯曲疲劳性能研究. 建筑结构学报. 2022(04): 134-141 .
    7. 赵国良,董成,王雷. 荷载多变的混凝土弯曲疲劳数值仿真. 计算机仿真. 2022(09): 343-347+414 .
    8. 杜敏,武亮,张建铭. 长龄期中低热混凝土断裂性能试验研究. 混凝土. 2021(01): 57-60 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.3 %FULLTEXT: 24.3 %META: 70.1 %META: 70.1 %PDF: 5.7 %PDF: 5.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.8 %其他: 8.8 %其他: 0.1 %其他: 0.1 %Pathum Thani: 0.6 %Pathum Thani: 0.6 %上海: 1.8 %上海: 1.8 %上饶: 0.4 %上饶: 0.4 %东莞: 0.3 %东莞: 0.3 %临汾: 0.1 %临汾: 0.1 %兰州: 0.3 %兰州: 0.3 %北京: 10.9 %北京: 10.9 %十堰: 1.3 %十堰: 1.3 %南京: 1.3 %南京: 1.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.6 %哥伦布: 0.6 %嘉兴: 0.3 %嘉兴: 0.3 %大庆: 0.1 %大庆: 0.1 %天津: 2.1 %天津: 2.1 %安康: 0.4 %安康: 0.4 %宣城: 0.6 %宣城: 0.6 %常德: 0.1 %常德: 0.1 %平顶山: 0.3 %平顶山: 0.3 %张家口: 2.8 %张家口: 2.8 %徐州: 0.3 %徐州: 0.3 %成都: 2.1 %成都: 2.1 %扬州: 1.2 %扬州: 1.2 %昆明: 0.6 %昆明: 0.6 %曼谷: 0.1 %曼谷: 0.1 %朝阳: 0.3 %朝阳: 0.3 %杭州: 0.7 %杭州: 0.7 %松原: 0.1 %松原: 0.1 %武汉: 0.9 %武汉: 0.9 %江门: 0.1 %江门: 0.1 %池州: 1.2 %池州: 1.2 %沈阳: 0.4 %沈阳: 0.4 %洛阳: 0.4 %洛阳: 0.4 %济宁: 0.3 %济宁: 0.3 %深圳: 0.3 %深圳: 0.3 %温州: 0.7 %温州: 0.7 %港区: 0.4 %港区: 0.4 %漯河: 3.6 %漯河: 3.6 %烟台: 0.1 %烟台: 0.1 %焦作: 0.1 %焦作: 0.1 %石家庄: 1.9 %石家庄: 1.9 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 9.0 %芒廷维尤: 9.0 %芝加哥: 1.6 %芝加哥: 1.6 %衡水: 0.1 %衡水: 0.1 %西宁: 28.9 %西宁: 28.9 %西安: 1.2 %西安: 1.2 %西雅图: 0.3 %西雅图: 0.3 %诺沃克: 0.7 %诺沃克: 0.7 %贵阳: 0.4 %贵阳: 0.4 %运城: 0.7 %运城: 0.7 %郑州: 1.6 %郑州: 1.6 %重庆: 0.3 %重庆: 0.3 %长沙: 3.1 %长沙: 3.1 %青岛: 0.9 %青岛: 0.9 %鞍山: 0.3 %鞍山: 0.3 %其他其他Pathum Thani上海上饶东莞临汾兰州北京十堰南京哈尔滨哥伦布嘉兴大庆天津安康宣城常德平顶山张家口徐州成都扬州昆明曼谷朝阳杭州松原武汉江门池州沈阳洛阳济宁深圳温州港区漯河烟台焦作石家庄秦皇岛绵阳芒廷维尤芝加哥衡水西宁西安西雅图诺沃克贵阳运城郑州重庆长沙青岛鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views(421) PDF downloads(22) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return