• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
DAI Zhiyuan, LI Tian, ZHANG Weihua, ZHANG Jiye. Effect of Aerodynamic Wings on Lift Force Characteristics of High-Speed Maglev Train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 498-505. doi: 10.3969/j.issn.0258-2724.20210855
Citation: DAI Zhiyuan, LI Tian, ZHANG Weihua, ZHANG Jiye. Effect of Aerodynamic Wings on Lift Force Characteristics of High-Speed Maglev Train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 498-505. doi: 10.3969/j.issn.0258-2724.20210855

Effect of Aerodynamic Wings on Lift Force Characteristics of High-Speed Maglev Train

doi: 10.3969/j.issn.0258-2724.20210855
  • Received Date: 02 Nov 2021
  • Rev Recd Date: 28 Dec 2021
  • Publish Date: 14 Jan 2022
  • Maglev trains are subjected to great aerodynamic lift force when running at high speeds, especially the tail car, which may deteriorate the suspension performance and even cause the suspension control system to fail. All these will affect the ride comfort and operation safety of high-speed maglev trains. Therefore, it is urgent to study and improve the lift force characteristics of the tail car of high-speed maglev trains. To this end, a numerical simulation of the high-speed maglev train is carried out in comparison with a wind tunnel test, and the surface pressure coefficient of the train obtained through numerical simulation is in good agreement with the wind tunnel test results. Then, aerodynamic wings (aero-wings) are installed to improve the aerodynamic lift force performance of the tail car, and the influence of the angle and number of the aero-wings on the aerodynamic characteristics of the tail car is studied. The results show that the aerodynamic lift force of the wing decreases with the increase of angle when only one is installed, but the aerodynamic lift force of the tail car decreases first and then increases. Moreover, the lift force of the tail car is the smallest when the aero-wing angle is 12.5°. Compared with the original maglev train, the aerodynamic lift force coefficient of the winged train is reduced by 3.9%, while the resistance of the aero-wing and the tail car is slightly increased. On the basis that the tangent angle between the aero-wing and the car body remains unchanged, multiple 12.5° aero-wings are installed on the tail car. The aerodynamic resistance of the aero-wings at different positions is basically the same, and the aerodynamic resistance of the tail car increase as the number of aero-wings increases. However, the aerodynamic lift force of the aero-wing at different positions is different, which decreases toward the tip of the nose. The aerodynamic lift force of the tail car first decreases with the increase of the aero-wing number and then stabilizes. Finally, the aerodynamic performance of the maglev train with two aero-wings is found relatively better. Compared with the original maglev train, the aerodynamic lift force of the tail car is reduced by 4.6%, and the resistance of the whole vehicle is only increased by 1.4%.

     

  • [1]
    邓自刚,张勇,王博,等. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报,2019,54(5): 1063-1072. doi: 10.3969/j.issn.0258-2724.20180204

    DENG Zhigang, ZHANG Yong, WANG Bo, et al. Present situation and prospect of evacuated tube transportation system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1063-1072. doi: 10.3969/j.issn.0258-2724.20180204
    [2]
    王家素,王素玉. 高温超导磁悬浮列车研究综述[J]. 电气工程学报,2015,10(11): 1-10. doi: 10.11985/2015.11.001

    WANG Jiasu, WANG Suyu. High temperature superconducting maglev train[J]. Journal of Electrical Engineering, 2015, 10(11): 1-10. doi: 10.11985/2015.11.001
    [3]
    DONG F L, HUANG Z, HAO L N, et al. An on-board 2G HTS magnets system with cooling-power-free and persistent-current operation for ultrahigh speed superconducting maglevs[J]. Scientific Reports, 2019, 9(1): 1-12.
    [4]
    ZHOU P, LI T, ZHAO C F, et al. Numerical study on the flow field characteristics of the new high-speed maglev train in open air[J]. Journal of Zhejiang University−SCIENCE A, 2020, 21(5): 366-381. doi: 10.1631/jzus.A1900412
    [5]
    沈志云. 关于我国发展真空管道高速交通的思考[J]. 西南交通大学学报,2005,40(2): 133-137. doi: 10.3969/j.issn.0258-2724.2005.02.001

    SHEN Zhiyun. On developing high-speed evacuated tube transportation in China[J]. Journal of Southwest Jiaotong University, 2005, 40(2): 133-137. doi: 10.3969/j.issn.0258-2724.2005.02.001
    [6]
    翟婉明,赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报,2016,51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001

    ZHAI Wanming, ZHAO Chunfa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001
    [7]
    丁叁叁,姚拴宝,陈大伟. 高速磁浮列车气动升力特性[J]. 机械工程学报,2020,56(8): 228-234. doi: 10.3901/JME.2020.08.228

    DING Sansan, YAO Shuanbao, CHEN Dawei. Aerodynamic lift force of high-speed maglev train[J]. Journal of Mechanical Engineering, 2020, 56(8): 228-234. doi: 10.3901/JME.2020.08.228
    [8]
    李人宪,刘应清,翟婉明. 高速磁悬浮列车纵向及垂向气动力数值分析[J]. 中国铁道科学,2004,25(1): 8-12. doi: 10.3321/j.issn:1001-4632.2004.01.002

    LI Renxian, LIU Yingqing, ZHAI Wanming. Numerical analysis of aerodynamic force in longitudinal and vertical direction for high-speed maglev train[J]. China Railway Science, 2004, 25(1): 8-12. doi: 10.3321/j.issn:1001-4632.2004.01.002
    [9]
    刘堂红,田红旗,王承尧. 不同磁浮列车外形的气动性能比较[J]. 国防科技大学学报,2006,28(3): 94-98. doi: 10.3969/j.issn.1001-2486.2006.03.020

    LIU Tanghong, TIAN Hongqi, WANG Chenyao. Aerodynamic performance comparison of several kind of nose shape of maglev train[J]. Journal of National University of Defense Technology, 2006, 28(3): 94-98. doi: 10.3969/j.issn.1001-2486.2006.03.020
    [10]
    舒信伟,谷传纲,梁习锋,等. 高速磁浮列车气动阻力性能数值模拟与参数化评估[J]. 交通运输工程学报,2006,6(2): 6-10. doi: 10.3321/j.issn:1671-1637.2006.02.002

    SHU Xinwei, GU Chuangang, LIANG Xifeng, et al. Numerical simulation and parameterized investigation of aerodynamic drag performances of high-speed maglev trains[J]. Journal of Traffic and Transportation Engineering, 2006, 6(2): 6-10. doi: 10.3321/j.issn:1671-1637.2006.02.002
    [11]
    SUN Z X, WANG M Y, WEI L Y, et al. Aerodynamic shape optimization of an urban maglev train[J]. Acta Mechanica Sinica, 2021, 37(5): 954-969.
    [12]
    毕海权,雷波,张卫华. 自然风对高速磁浮列车气动特性的影响[J]. 中国铁道科学,2007,28(2): 67-72.

    BI Haiquan, LEI Bo, ZHANG Weihua. Effects of natural wind on aerodynamic characteristics of high-speed maglev train[J]. China Railway Science, 2007, 28(2): 67-72.
    [13]
    梁习锋,沈娴雅. 环境风与列车交会耦合作用下磁浮列车横向气动性能[J]. 中南大学学报(自然科学版),2007,38(4): 751-757. doi: 10.3969/j.issn.1672-7207.2007.04.031

    LIANG Xifeng, SHEN Xianya. Lateral aerodynamic performances of maglev train when two trains meet with wind blowing[J]. Journal of Central South University (Science and Technology), 2007, 38(4): 751-757. doi: 10.3969/j.issn.1672-7207.2007.04.031
    [14]
    LI T, QIN D, ZHANG J Y. Effect of RANS turbulence model on aerodynamic behavior of trains in crosswind[J]. Chinese Journal of Mechanical Engineering, 2019, 32(5): 85-96. doi: 10.1186/s10033-019-0402-2
    [15]
    LI T, DAI Z Y, YU M G, et al. Numerical investigation on the aerodynamic resistances of double-unit trains with different gap lengths[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 549-560. doi: 10.1080/19942060.2021.1895321
  • Relative Articles

    [1]YUANZHOU Zhiyuan, JI Bohai, FU Hui, MENG Cheng. Fatigue Crack Repair Mechanism and Effect by Pneumatic Impact Treatment[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 307-314. doi: 10.3969/j.issn.0258-2724.20220365
    [2]LIU Jiali, YU Mengge, CHEN Dawei, YANG Zhigang. Numerical Simulation Method of Aerodynamic Noise of High-Speed Maglev Train Considering Quadrupole Noise Source[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 54-61. doi: 10.3969/j.issn.0258-2724.20220151
    [3]LI Tian, QIN Deng, ZHANG Jiye, ZHANG Weihua. Numerical Approach for Far-Field Aerodynamic Noise of High-Speed Trains Based on Half Model[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 272-279, 286. doi: 10.3969/j.issn.0258-2724.20210678
    [4]YU Minggao, CHEN Jing, SU Guanfeng. Numerical Simulation of Fire-induced Smoke in Train Compartment Based on Fire Dynamics Simulation[J]. Journal of Southwest Jiaotong University, 2017, 30(4): 826-834. doi: 10.3969/j.issn.0258-2724.2017.04.023
    [5]ZHANG Yadong, ZHANG Jiye, ZHANG Liang, LI Tian. Numerical Analysis of Aerodynamic Noise of Motor Car Bogie for High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 870-877. doi: 10.3969/j.issn.0258-2724.2016.05.008
    [6]ZHU Zhiwen. Numerical Simulation of Stochastic Characteristics of Fluctuating Lift on a Fixed Circular Cylinder[J]. Journal of Southwest Jiaotong University, 2013, 26(6): 975-982. doi: 10.3969/j.issn.0258-2724.2013.06.002
    [7]ZHENG Zheng-Yu, LI Ren-Xian. Numerical Analysis of Aerodynamic Dipole Source on High-Speed Train Surface[J]. Journal of Southwest Jiaotong University, 2011, 24(6): 996-1002. doi: 10.3969/j.issn.0258-2724.2011.06.018
    [8]SU Yan-Chen, WU Chuan-Hui. Detecting High-Speed Maglev Line Irregularity Based on Intrinsic Mode Function Analysis[J]. Journal of Southwest Jiaotong University, 2011, 24(1): 92-97. doi: 10.3969/j.issn.0258-2724.2011.01.014
    [9]CHENG Zhi-Jiang, BARRIERE T, LIU Bao-Sheng, GELIN J C. Experiment and Numerical Simulation of Micro-injection Moulding[J]. Journal of Southwest Jiaotong University, 2010, 23(4): 635-638. doi: 10. 3969/ j. issn. 0258-2724.
    [10]ZHAO Jing, LI Renxian. Numerical Analysis of Aerodynamics of High-Speed Trains Running into Tunnels[J]. Journal of Southwest Jiaotong University, 2009, 22(1): 96-100.
    [11]GUOXiao-zhou, WANG Ying, WANG Shi-xiong. Location and Speed Detection System for High-Speed Maglev Vehicle[J]. Journal of Southwest Jiaotong University, 2004, 17(4): 455-459.
    [12]TONG Bing, ZHU Bing, ZHOU Ben-kuan. Numerical Simulation of Velocity Field of Flow Around Square Cylinder[J]. Journal of Southwest Jiaotong University, 2002, 15(2): 121-124.
    [13]CHENG Qian-gong, HUHou-tian. Discrete Element Simulation of Full-Course Kinematics of Rocky High-Speed Landslide[J]. Journal of Southwest Jiaotong University, 2000, 13(1): 18-22.
    [14]Lei Bo , Liu Yingqing. Simulation of Pressure on Overline Bridge Due to High-Speed Train Passage[J]. Journal of Southwest Jiaotong University, 1999, 12(3): 259-263.
  • Cited by

    Periodical cited type(9)

    1. 徐古福,张继业,李田,兰洪. 升力翼对高速列车非定常气动性能影响研究. 铁道学报. 2025(03): 25-39 .
    2. 张宝珍,熊小慧,汪欣然,耿嘉旭. 升力翼高速列车前后翼干扰特性研究. 中南大学学报(自然科学版). 2024(05): 1806-1821 .
    3. 唐家伟,徐古福,张继业,李田. 升力翼对列车气动特性及运行安全性的影响研究. 交通运输工程与信息学报. 2024(02): 173-190 .
    4. 张博栋,黄莎,李志伟,彭文静,赵延佳,林锦荣,郑晨. U型轨道侧轨高度对超导磁浮列车气动特性的影响. 五邑大学学报(自然科学版). 2024(03): 21-29 .
    5. 王瑞东,张军,倪章松,高超,武斌,严日华. 气动升力协同列车升力翼优化设计研究. 风机技术. 2024(03): 60-67 .
    6. 李志伟,吴京龙,黄莎,曾广志,公维斯. 基于仿生鲨鱼鳍结构的高速磁悬浮列车气动减阻研究. 中南大学学报(自然科学版). 2024(10): 4007-4019 .
    7. 金宇. 气动升力对高速磁浮列车速度的影响分析. 现代城市轨道交通. 2023(02): 27-30 .
    8. 李一凡,李田,张继业,张卫华. 导流装置对高速磁浮列车气动特性的影响. 实验流体力学. 2023(01): 91-99 .
    9. 熊小慧,汪欣然,张洁,王凯文,程凡,罗长骏. 升力翼对高速列车列车风与尾流特性的影响. 交通运输工程学报. 2023(03): 148-161 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-092024-102024-112024-122025-012025-022025-032025-032025-042025-052025-062025-07010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 34.5 %FULLTEXT: 34.5 %META: 61.6 %META: 61.6 %PDF: 3.9 %PDF: 3.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.2 %其他: 12.2 %Central District: 0.3 %Central District: 0.3 %Matawan: 0.3 %Matawan: 0.3 %San Lorenzo: 0.3 %San Lorenzo: 0.3 %[]: 0.1 %[]: 0.1 %上海: 1.3 %上海: 1.3 %临汾: 0.3 %临汾: 0.3 %伊瓦格: 0.3 %伊瓦格: 0.3 %包头: 0.1 %包头: 0.1 %北京: 1.9 %北京: 1.9 %十堰: 0.3 %十堰: 0.3 %南京: 0.6 %南京: 0.6 %南昌: 0.3 %南昌: 0.3 %台北: 0.3 %台北: 0.3 %台州: 0.1 %台州: 0.1 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.3 %哥伦布: 0.3 %哥德堡: 0.1 %哥德堡: 0.1 %商丘: 0.1 %商丘: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.4 %天津: 0.4 %宜宾: 0.1 %宜宾: 0.1 %宣城: 0.4 %宣城: 0.4 %山景城: 0.3 %山景城: 0.3 %常州: 0.1 %常州: 0.1 %平顶山: 0.1 %平顶山: 0.1 %张家口: 3.1 %张家口: 3.1 %悉尼: 0.3 %悉尼: 0.3 %成都: 1.9 %成都: 1.9 %扬州: 0.6 %扬州: 0.6 %揭阳: 0.1 %揭阳: 0.1 %杉户町: 0.3 %杉户町: 0.3 %杭州: 0.4 %杭州: 0.4 %株洲: 0.1 %株洲: 0.1 %格兰特县: 0.4 %格兰特县: 0.4 %池州: 1.0 %池州: 1.0 %温州: 0.1 %温州: 0.1 %湖州: 0.4 %湖州: 0.4 %漯河: 1.8 %漯河: 1.8 %烟台: 0.1 %烟台: 0.1 %珠海: 0.1 %珠海: 0.1 %石家庄: 2.6 %石家庄: 2.6 %芒廷维尤: 17.8 %芒廷维尤: 17.8 %芝加哥: 0.4 %芝加哥: 0.4 %衡阳: 0.3 %衡阳: 0.3 %衢州: 0.1 %衢州: 0.1 %西宁: 41.2 %西宁: 41.2 %西安: 0.4 %西安: 0.4 %西雅图: 0.3 %西雅图: 0.3 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.3 %贵阳: 0.3 %运城: 1.3 %运城: 1.3 %郑州: 0.3 %郑州: 0.3 %重庆: 0.1 %重庆: 0.1 %长沙: 2.6 %长沙: 2.6 %阿姆斯特丹: 0.3 %阿姆斯特丹: 0.3 %青岛: 0.1 %青岛: 0.1 %香港: 0.1 %香港: 0.1 %其他Central DistrictMatawanSan Lorenzo[]上海临汾伊瓦格包头北京十堰南京南昌台北台州哈尔滨哥伦布哥德堡商丘嘉兴大连天津宜宾宣城山景城常州平顶山张家口悉尼成都扬州揭阳杉户町杭州株洲格兰特县池州温州湖州漯河烟台珠海石家庄芒廷维尤芝加哥衡阳衢州西宁西安西雅图诺沃克贵阳运城郑州重庆长沙阿姆斯特丹青岛香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views(478) PDF downloads(30) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return