Citation: | YANG Jun, GAO Zhiming, LI Jintai, ZHANG Chen. Correspondence Calculation of Three-Dimensional Point Cloud Model Based on Attention Mechanism[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1184-1193. doi: 10.3969/j.issn.0258-2724.20220682 |
The existing deep learning methods have low precision and poor generalization ability in calculating dense correspondence between non-rigid point cloud models. To address these issues, a novel method for calculating unsupervised three-dimensional (3D) point cloud model correspondence based on a feature sequence attention mechanism was proposed. Firstly, the feature extraction module was used to extract the features of the input point cloud model pair. Secondly, the transformer module learned context information by capturing self-attention and cross-attention and generated a soft mapping matrix through the correspondence prediction module. Finally, the reconstruction module reconstructed the point cloud model based on the obtained soft mapping matrix and used the unsupervised loss function to complete training. The experimental results on FAUST, SHREC’19, and SMAL datasets show that the average correspondence errors of this algorithm are 5.1, 5.8, and 5.4, respectively, which are lower than those of the classical algorithms including 3D-CODED, Elementary Structures, and CorrNet3D. The correspondence between non-rigid 3D point cloud models calculated by the proposed algorithm has higher accuracy and stronger generalization ability.
[1] |
朱军,陈逸东,张昀昊,等. 网络环境下全景图和点云数据快速融合可视化方法[J]. 西南交通大学学报,2022,57(1): 18-27. doi: 10.3969/j.issn.0258-2724.20200360
ZHU Jun, CHEN Yidong, ZHANG Yunhao, et al. Visualization method for fast fusion of panorama and point cloud data in network environment[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 18-27. doi: 10.3969/j.issn.0258-2724.20200360
|
[2] |
ZHANG Z F, WANG Z W, LIN Z, et al. Image super-resolution by neural texture transfer[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE,2019: 7982-7991.
|
[3] |
BOGO F, ROMERO J, LOPER M, et al. FAUST: dataset and evaluation for 3D mesh registration[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus:IEEE,2014: 3794-3801.
|
[4] |
WOLTER D, LATECKI L J. Shape matching for robot mapping[C]//Pacific Rim International Conference on Artificial Intelligence. Berlin: Springer, 2004: 693-702.
|
[5] |
BRONSTEIN A M, BRONSTEIN M M, KIMMEL R. Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(5): 1168-1172.
|
[6] |
HUANG Q X, ADAMS B, WICKE M, et al. Non-rigid registration under isometric deformations[C]// Proceedings of the Symposium on Geometry Processing. Copenhagen: ACM, 2008: 1449-1457.
|
[7] |
TEVS A, BERNER A, WAND M, et al. Intrinsic shape matching by planned landmark sampling[J]. Computer Graphics Forum, 2011, 30(2): 543-552. doi: 10.1111/j.1467-8659.2011.01879.x
|
[8] |
OVSJANIKOV M, BEN-CHEN M, SOLOMON J, et al. Functional maps: a flexible representation of maps between shapes[J]. ACM Transactions on Graphics, 31(4): 30.1-30.11.
|
[9] |
LITANY O, REMEZ T, RODOLÀ E, et al. Deep functional maps: structured prediction for dense shape correspondence[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice:IEEE,2017: 5660-5668.
|
[10] |
DONATI N, SHARMA A, OVSJANIKOV M. Deep geometric functional maps: robust feature learning for shape correspondence[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 8589-8598.
|
[11] |
GINZBURG D, RAVIV D. Cyclic functional mapping: self-supervised correspondence between non-isometric deformable shapes[C]//The 16th European Conference on Computer Vision. Glasgow: ACM, 2020: 36-52.
|
[12] |
ROUFOSSE J M, SHARMA A, OVSJANIKOV M. Unsupervised deep learning for structured shape matching[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul:IEEE,2019: 1617-1627.
|
[13] |
杨军,王博. 非刚性部分模型与完整模型的对应关系计算[J]. 武汉大学学报(信息科学版),2021,46(3): 434-441.
YANG Jun, WANG Bo. Non-rigid shape correspondence between partial shape and full shape[J]. Geomatics and Information Science of Wuhan University, 2021, 46(3): 434-441.
|
[14] |
WU Y, YANG J. Multi-part shape matching by simultaneous partial functional correspondence[J]. The Visual Computer, 2023, 39(1): 393-412. doi: 10.1007/s00371-021-02337-6
|
[15] |
MARIN R, RAKOTOSAONA M J, MELZI S, et al. Correspondence learning via linearly-invariant embedding[C]//The 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Vancouver: MIT Press, 2020: 1341-1350.
|
[16] |
WU Y, YANG J, ZHAO J L. Partial 3D shape functional correspondence via fully spectral eigenvalue alignment and upsampling refinement[J]. Computers & Graphics, 2020, 92: 99-113.
|
[17] |
杨军,闫寒. 校准三维模型基矩阵的函数映射的对应关系计算[J]. 武汉大学学报(信息科学版),2018,43(10): 1518-1525.
YANG Jun, YAN Han. An algorithm for calculating shape correspondences using functional maps by calibrating base matrix of 3D shapes[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1518-1525.
|
[18] |
GROUEIX T, FISHER M, KIM V G, et al. 3D-CODED: 3D correspondences by deep deformation[C]// Computer Vision—ECCV 2018: 15th European Conference. Munich: ACM, 2018: 235-251.
|
[19] |
DEPRELLE T, GROUEIX T, FISHER M, et al. Learning elementary structures for 3D shape generation and matching[C]//Neural Information Processing Systems. Vancouver: MIT Press, 2019: 7433-7443.
|
[20] |
ZENG Y M, QIAN Y, ZHU Z Y, et al. CorrNet3D: unsupervised end-to-end learning of dense correspondence for 3D point clouds[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021: 6048-6057.
|
[21] |
WANG Y, SOLOMON J. Deep closest point: learning representations for point cloud registration[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 3522-3531.
|
[22] |
WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 38(5): 146.1-146.12.
|
[23] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017: 6000-6010.
|
[24] |
LOPER M, MAHMOOD N, ROMERO J, et al. SMPL: a skinned multi-person linear model[J]. ACM Transactions on Graphics, 2015, 34(6):248.1-248.16.
|
[25] |
MELZI S, MARIN R, RODOLÀ E, et al. Matching humans with different connectivity[C]//Eurographics Workshop on 3D Object Retrieval. Genoa: Springer, 2019: 121-128.
|
[26] |
ZUFFI S, KANAZAWA A, JACOBS D W, et al. 3D menagerie: modeling the 3D shape and pose of animals[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 5524-5532.
|
[27] |
LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664.99615.94
|