Citation: | PENG Yeye, SONG Xinyue, ZHAO Chunfa, FENG Yang, LOU Huibin. Horizontal Curve Alignment and Parameters of Turnout for High-Speed Electromagnetic Suspension Maglev Transit[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 865-873. doi: 10.3969/j.issn.0258-2724.20240447 |
High-speed electromagnetic suspension (EMS) maglev turnouts are one of the weak links in maglev transit, and the study of their alignment parameters is essential for optimizing turnout design. To explore the impacts of the horizontal curve alignment and parameters on the turnout design, the geometric constraints of the vehicle-track system, the requirements for smooth and comfortable train operation, and the demands of turnout manufacturing and maintenance economy on turnout alignment were comprehensively analyzed. Subsequently, the combinations of turnout curve alignment and the principles for selecting key parameters of high-speed EMS maglev turnouts were explored. Finally, horizontal alignment schemes for turnouts under three passing conditions, low speed, moderate speed, and high speed, were proposed. The results show that the horizontal curve radius of turnouts, constrained by the geometric constraints of the vehicle-track system, should not be less than 350.00 m. Single circular curve turnouts exhibit abrupt lateral acceleration changes and are only suitable for low-speed passing. Clothoid-to-circular curve turnouts require large land occupations and are not recommended. Clothoid-circular-clothoid curve turnouts allow parameter adjustments according to operational requirements and are applicable to diverse scenarios. In clothoid-circular-clothoid curve turnout designs, the turnout zone length, lateral displacement at the ends, and switching angle decrease as the circular curve radius increases. The circular curve radius is subject to an upper limit to satisfy lateral displacement after the turnouts. Both the switching angle and lateral displacement at the ends increase with the increase in the clothoid-to-circular ratio, which is recommended to be selected between 2 and 4.
[1] |
翟婉明,赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报,2016,51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001
ZHAI Wanming, ZHAO Chunfa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001
|
[2] |
ZHAO C F, ZHAI W M. Maglev vehicle/guideway vertical random response and ride quality[J]. Vehicle System Dynamics, 2002, 38(3): 185-210. doi: 10.1076/vesd.38.3.185.8289
|
[3] |
王志强,郭伟鹏,桑孜良,等. 高速磁浮列车导向系统的优化控制方法[J]. 西南交通大学学报,2025,60(4): 833 - 841, 864.
WANG Zhiqiang, GUO Weipeng, SANG Ziliang, et al. Optimized control method for guidance system of high-speed maglev train[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 833 - 841,864.
|
[4] |
刘伟,赵春发,娄会彬,等. 基于虚拟激励法的磁浮车桥耦合系统随机振动分析[J]. 西南交通大学学报,2024,59(4): 823-831. doi: 10.3969/j.issn.0258-2724.20240035
LIU Wei, ZHAO Chunfa, LOU Huibin, et al. Stochastic vibration analysis of maglev train-bridge coupling system based on pseudo excitation method[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 823-831. doi: 10.3969/j.issn.0258-2724.20240035
|
[5] |
卜秀孟,王力东,黎清蓉,等. 高速磁浮车-桥耦合振动控制参数影响分析[J]. 西南交通大学学报,2024,59(4): 848-857,866. doi: 10.3969/j.issn.0258-2724.20230534
BU Xiumeng, WANG Lidong, LI Qingrong, et al. Influence analysis of vibration control parameters for high-speed maglev train-bridge coupling[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 848-857,866. doi: 10.3969/j.issn.0258-2724.20230534
|
[6] |
FENG Y, ZHAO C F, LIANG X, et al. Influence of bolster-hanger length on the dynamic performance of high-speed EMS maglev vehicles[J]. Vehicle System Dynamics, 2022, 60(11): 3743-3764. doi: 10.1080/00423114.2021.1973042
|
[7] |
罗英昆,赵春发,梁鑫,等. 小半径竖曲线上磁浮车辆空气弹簧动态响应分析[J]. 振动与冲击,2020,39(17): 99-105.
LUO Yingkun, ZHAO Chunfa, LIANG Xin, et al. Dynamic responses of air-spring suspension of a maglev vehicle negotiating a small-radius vertical curved track[J]. Journal of Vibration and Shock, 2020, 39(17): 99-105.
|
[8] |
梁建英. 中国高速磁浮交通系统发展现状与展望[J]. 科学,2022,74(5): 31-36.
LIANG Jianying. Development status and future prospects of the high-speed maglev transportation system in China[J]. Science, 2022, 74(5): 31-36.
|
[9] |
丁叁叁,付善强,梁鑫. 中国高速磁浮交通工程实践与展望[J]. 前瞻科技,2023,2(4): 40-48.
DING Sansan, FU Shanqiang, LIANG Xin. Engineering practice and prospect of high-speed maglev transportation in China[J]. Science and Technology Foresight, 2023, 2(4): 40-48.
|
[10] |
林国斌,刘万明,徐俊起,等. 中国高速磁浮交通的发展机遇与挑战[J]. 前瞻科技,2023,2(4): 7-18.
LIN Guobin, LIU Wanming, XU Junqi, et al. Opportunities and challenges for the development of high-speed maglev transportation in China[J]. Science and Technology Foresight, 2023, 2(4): 7-18.
|
[11] |
吴祥明. 磁浮列车[M]. 上海:上海科学技术出版社,2003.
|
[12] |
曾国锋,韩紫平,刘鸣博,等. 电磁悬浮型高速磁浮车-岔垂向动力响应[J]. 同济大学学报(自然科学版),2023,51(3): 303-313.
ZENG Guofeng, HAN Ziping, LIU Mingbo, et al. Vertical dynamic response of electromagnetic suspension high-speed maglev vehicle-turnout[J]. Journal of Tongji University (Natural Science), 2023, 51(3): 303-313.
|
[13] |
丁叁叁. 时速600公里高速磁浮交通系统[M]. 上海:上海科学技术出版社,2022.
|
[14] |
殷月俊,罗汉中,黄醒春. 高速磁浮道岔振动响应的原位实测[J]. 上海交通大学学报,2007,41(4): 658-663. doi: 10.3321/j.issn:1006-2467.2007.04.032
YIN Yuejun, LUO Hanzhong, HUANG Xingchun. In situ research of dynamic response of maglev turnout[J]. Journal of Shanghai Jiao Tong University, 2007, 41(4): 658-663. doi: 10.3321/j.issn:1006-2467.2007.04.032
|
[15] |
肖舟. 磁浮道岔梁结构动应力及疲劳寿命分析[D]. 成都:西南交通大学,2011.
|
[16] |
顾行涛. 高速磁浮车辆—道岔梁耦合振动建模与仿真分析[D]. 成都:西南交通大学,2009.
|
[17] |
顾行涛,赵春发,翟婉明. 磁浮道岔梁自振特性及瞬态响应分析[J]. 交通运输工程与信息学报,2009,7(4): 56-62. doi: 10.3969/j.issn.1672-4747.2009.04.010
GU Xingtao, ZHAO Chunfa, ZHAI Wanming. Natural vibration and transient response of maglev switch beam[J]. Journal of Transportation Engineering and Information, 2009, 7(4): 56-62. doi: 10.3969/j.issn.1672-4747.2009.04.010
|
[18] |
朱志伟. 高速磁浮线高速道岔驱动布置的研究[J]. 城市轨道交通研究,2012,15(5): 83-85. doi: 10.3969/j.issn.1007-869X.2012.05.023
ZHU Zhiwei. Drive arrangement for high-speed switch of high-speed maglev[J]. Urban Mass Transit, 2012, 15(5): 83-85. doi: 10.3969/j.issn.1007-869X.2012.05.023
|
[19] |
张宏君. 高速磁浮线路道岔钢梁移位过程及其数值分析[J]. 城市轨道交通研究,2010,13(7): 32-36. doi: 10.3969/j.issn.1007-869X.2010.07.010
ZHANG Hongjun. Shift process and numerical analysis of high speed maglev switch change[J]. Urban Mass Transit, 2010, 13(7): 32-36. doi: 10.3969/j.issn.1007-869X.2010.07.010
|
[20] |
ZHU Z W, YE F, ZENG G F, et al. Analysis of dynamic characteristics of elastic-bending turnout for maglev transportation[C]//The 18th COTA International Conference of Transportation Professionals (CICTP). [S.l.]: American Society of Civil Engineers, 2018: 1102-1107.
|
[21] |
赵志苏. 摆式悬架高速磁悬浮列车转向特性研究[J]. 机车电传动,2009(1): 43-45.
ZHAO Zhisu. Researches on turning characteristic of tilting suspension high-speed maglev trains[J]. Electric Drive for Locomotives, 2009(1): 43-45.
|
[22] |
易思蓉. 高速磁悬浮线路最小平曲线半径初步研究[J]. 铁道标准设计,2004,48(8): 23-26,114. doi: 10.3969/j.issn.1004-2954.2004.08.009
YI Sirong. A preliminary study over the minimum plane curve radius for high-speed maglev[J]. Railway Standard Design, 2004, 48(8): 23-26,114. doi: 10.3969/j.issn.1004-2954.2004.08.009
|
[23] |
米隆,招阳,魏庆朝,等. 磁浮交通系统线路缓和曲线参数取值方法研究[J]. 北京交通大学学报,2007,31(4): 92-95,100. doi: 10.3969/j.issn.1673-0291.2007.04.023
MI Long, ZHAO Yang, WEI Qingchao, et al. Research on alignment parameters of high-speed maglev railway transaction curve[J]. Journal of Beijing Jiaotong University, 2007, 31(4): 92-95,100. doi: 10.3969/j.issn.1673-0291.2007.04.023
|
[24] |
赵春发,冯洋,翟婉明. 面向列车稳定舒适运行的磁浮交通车线动力学参数匹配设计[J]. 前瞻科技,2023,2(4): 49-60.
ZHAO Chunfa, FENG Yang, ZHAI Wanming. Matching design of train and line dynamics parameters of maglev transportation oriented toward stable and comfortable train running[J]. Science and Technology Foresight, 2023, 2(4): 49-60.
|
[25] |
中华人民共和国住房和城乡建设部. 高速磁浮交通设计标准:CJJ/T 310—2021[S]. 北京:中国建筑工业出版社,2021.
|
[1] | WANG Zhiqiang, GUO Weipeng, SANG Ziliang, LI Bowen, LONG Zhiqiang, LI Xiaolong. Optimized Control Method for Guidance System of High-Speed Maglev Train[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 833-841, 864. doi: 10.3969/j.issn.0258-2724.20230516 |
[2] | ZHANG Rongxin, CAI Xiaopei, TANG Xueyang, WANG Yi. Alignment Design of Superconducting Electrodynamic Suspension Turnouts and Optimization of Lateral Crossing Speed[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 893-903. doi: 10.3969/j.issn.0258-2724.20240421 |
[3] | ZHAO Weihua, CAO Yang. Influence of Nose Rail Reconstruction Profile Parameters Based on B-Spline Curve[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 264-272. doi: 10.3969/j.issn.0258-2724.20220693 |
[4] | WU Huichao, LUO Jianli, ZHOU Wen, WANG Yonggang, GAO Feng, CUI Tao, SHI Junjie. Coupled Vibration Between Low-Medium Speed Maglev Vehicle and Turnout[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 483-489. doi: 10.3969/j.issn.0258-2724.20210829 |
[5] | HAN Zhi, WANG Jingjing, GUAN Yuyan. Lighting Spacing in Curved Tunnel Using LED Lights[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 434-439. doi: 10.3969/j.issn.0258-2724.20200479 |
[6] | SONG Zhanfeng, GUO Jiejia, LI Jun. Fitting a Straight-Line to Data Points with Correlated Noise Between Coordinate Components under Constraints[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1283-1289. doi: 10.3969/j.issn.0258-2724.20200120 |
[7] | HOU Bowen, GAO Liang, LIU Qibin. Vehicle-Turnout Coupled Dynamics and Improvement Measures for Heavy Haul Lines[J]. Journal of Southwest Jiaotong University, 2015, 28(4): 604-609. doi: 10.3969/j.issn.0258-2724.2015.04.005 |
[8] | WANG Gang, RONG Jian, DING Tianbao, . Optimization of Time Parameters in Static Segment in FlexRay Network[J]. Journal of Southwest Jiaotong University, 2012, 25(2): 318-324. doi: 10.3969/j.issn.0258-2724.2012.02.024 |
[9] | XUE Feng, WANG Ciguang, ZHANG Zhanjie, 2. Optimization Algorithm for Wagon-Flow Allocation in Marshalling Station[J]. Journal of Southwest Jiaotong University, 2010, 23(6): 932-937. doi: 10.3969/j.issn.0258-2724.2010.06.019 |
[10] | Wang- Beng, CHEN Rong, CHEN Xiao-Beng. Key Technologies in H igh-Speed Railway TurnoutDesign[J]. Journal of Southwest Jiaotong University, 2010, 23(1): 28-33. doi: 10. 3969/.j issn. 0258-2724. 2 |
[11] | LI Li, CUI Dabin, JIN Xuesong. State of Arts of Research on Railway Wheel Profile Optimization[J]. Journal of Southwest Jiaotong University, 2009, 22(1): 13-19. |
[12] | CHEN Xiang, XU Bochu, ZHANG Weihua. Optimization of Seat Comfort of High-Speed Train[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 906-911. |
[13] | ZHOU Wen, LIU Xueyi. FEM Simulation of Straightening Tongue Rail of High-Speed Turnout[J]. Journal of Southwest Jiaotong University, 2008, 21(1): 82-85,95. |
[14] | NIChang-jian, CUIPeng, XIANG Rui. Universal Immune Evolutionary Algorithm for Interval-Constrained Optim ization Problem s[J]. Journal of Southwest Jiaotong University, 2005, 18(4): 548-552. |
[15] | GUANQin-chuan. Fuzzy Multi-objective Optimization Based on Neural Networks[J]. Journal of Southwest Jiaotong University, 2002, 15(3): 338-342. |
[16] | LIU Ge, LI Bai-lin. New Optimization Model of Curve Fairness[J]. Journal of Southwest Jiaotong University, 2002, 15(5): 584-587. |
[17] | RENZun-song, ZHAI Wan-ming, WANG Qi-chang. Simulation Calculation of Lateral Impact Force Acting on Guard Rail while Passing Through Turnout Zone on the Side-Way[J]. Journal of Southwest Jiaotong University, 2000, 13(4): 344-347. |