| Citation: | ZHANG Rongxin, CAI Xiaopei, TANG Xueyang, WANG Yi. Alignment Design of Superconducting Electrodynamic Suspension Turnouts and Optimization of Lateral Crossing Speed[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 893-903. doi: 10.3969/j.issn.0258-2724.20240421 |
To improve the speed of superconducting electrodynamic suspension (EDS) trains when passing through the turnout sideways, a coupled dynamics model for the superconducting EDS train-turnout was established based on multi-body dynamics theory and differential equations of motion. By analyzing the effects of the length of different turnout beams on the vehicle dynamic response, the optimal length of turnout beams was determined, and the corresponding alignment for maglev single-open turnout was designed. The dynamics response characteristics under different lateral crossing speeds were further investigated, and the critical values of lateral crossing speeds satisfying passenger comfort and travelling safety were clarified. The results show that a shorter turnout beam and lower passing speed can expand the stabilized region of the system, reduce the fluctuation of levitation and guide gap, and improve the comfort of passengers and the smoothness of train operation. When the train passes through the turnout line with a turnout beam length of 8 m at a speed of 100 km/h, the dynamic response is optimal, satisfying the comfort of passengers. The lateral crossing speed of the turnout can be up to 130 km/h, which is 85% higher than that of the existing maximum speed of maglev trains. With the increase of the lateral crossing speed, the effect of the turnout line on the safety of maglev train operation and the comfort of passengers becomes more significant, and the vehicle dynamic response is more obvious. The critical value of the lateral safe crossing speed is 150 km/h.
| [1] |
邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报,2022,57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001
DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001
|
| [2] |
吴会超,罗建利,周文,等. 中低速磁浮车岔耦合振动研究[J]. 西南交通大学学报,2022,57(3): 483-489. doi: 10.3969/j.issn.0258-2724.20210829
WU Huichao, LUO Jianli, ZHOU Wen, et al. Coupled vibration between low-medium speed maglev vehicle and turnout[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 483-489. doi: 10.3969/j.issn.0258-2724.20210829
|
| [3] |
牟瀚林,张一敏,徐绪宝,等. 高速磁浮铁路试验线建设方案研究[J]. 铁道工程学报,2023,40(8): 44-49. doi: 10.3969/j.issn.1006-2106.2023.08.008
MU Hanlin, ZHANG Yimin, XU Xubao, et al. Study on construction scheme of high-speed maglev railway test line[J]. Journal of Railway Engineering Society, 2023, 40(8): 44-49. doi: 10.3969/j.issn.1006-2106.2023.08.008
|
| [4] |
COFFEY H T, CHILTON F, HOPPIE L O. Feasibility of magnetically levitating high speed ground vehicles[M]. California: Stanford Research Institute, 1972.
|
| [5] |
曾国锋,韩紫平,刘鸣博,等. 电磁悬浮型高速磁浮车-岔垂向动力响应[J]. 同济大学学报(自然科学版),2023,51(3): 303-313.
ZENG Guofeng, HAN Ziping, LIU Mingbo, et al. Vertical dynamic response of electromagnetic suspension highspeed maglev vehicle-turnout[J]. Journal of Tongji University (Natural Science), 2023, 51(3): 303-313.
|
| [6] |
ZHANG Y J. Study on structural design of key beam of medium and low speed maglev turnout[J]. Machine Design & Research, 2022, 38(6): 203-208.
|
| [7] |
仵叔强. 中低速磁浮交通道岔平面线形研究与优化设计[J]. 现代城市轨道交通,2022(12): 1-5.
WU Shuqiang. Research and optimization design of plane alignment of medium and low speed maglev traffi c turnout[J]. Modern Urban Transit, 2022(12): 1-5.
|
| [8] |
吴昊,王飞,郭牧凡,等. 真空管超高速磁浮交通系统平面曲线参数运动学分析[J]. 铁道标准设计,2023,67(9): 21-27.
WU Hao, WANG Fei, GUO Mufan, et al. Kinematic analysis on plane curve parameter of vacuum tube ultra-high-speed maglev transportation system[J]. Railway Standard Design, 2023, 67(9): 21-27.
|
| [9] |
LI M, GAO D G, LI T, et al. Dynamic interaction of medium-low-speed maglev train running on the turnout made of steel structures[J]. Vehicle System Dynamics, 2023, 61(4): 1129-1150. doi: 10.1080/00423114.2022.2064757
|
| [10] |
WANG D X, LI X Z, WU Z Y. Dynamic performance of the LMS maglev train-track-bridge system under uneven settlement for two typical bridges[J]. International Journal of Structural Stability and Dynamics, 2021, 21(1): 2150006.1-2150006.33.
|
| [11] |
卜秀孟,王力东,黎清蓉,等. 高速磁浮车-桥耦合振动控制参数影响分析[J]. 西南交通大学学报,2024,59(4): 848-857,866. doi: 10.3969/j.issn.0258-2724.20230534
BU Xiumeng, WANG Lidong, LI Qingrong, et al. Influence analysis of vibration control parameters for high-speed maglev train-bridge coupling[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 848-857,866. doi: 10.3969/j.issn.0258-2724.20230534
|
| [12] |
KYOTANI Y. Recent progress by JNR on maglev[J]. IEEE Transactions on Magnetics, 24(2): 804-807.
|
| [13] |
YOSHIOKA H. Dynamic performance of MLX-01 car on yamanashi magnetic levitation test line[J]. Foregin Roling Stock, 2000, 37(5): 29-34.
|
| [14] |
王志强,龙志强,李晓龙. 高速磁浮列车搭接结构悬浮系统仿真分析[J]. 西南交通大学学报,2024,59(3): 590-599. doi: 10.3969/j.issn.0258-2724.20210932
WANG Zhiqiang, LONG Zhiqiang, LI Xiaolong. Simulation analysis of levitation system of high-speed maglev trains with joint structure[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 590-599. doi: 10.3969/j.issn.0258-2724.20210932
|
| [15] |
马卫华,李腾飞,胡俊雄,等. 超导EDS磁浮列车多级悬挂方案优化与动力学性能[J]. 交通运输工程学报,2023,23(6): 168-179.
MA Weihua, LI Tengfei, HU Junxiong, et al. Optimization on multi-stage suspension scheme and dynamics performance of superconducting EDS maglev train[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 168-179.
|
| [16] |
ZHAI W M. Vehicle–track coupled dynamics models[M]. Singapore: Springer Singapore, 2019: 17-149.
|
| [17] |
WANG Z L, XU Y L, LI G Q, et al. Modelling and validation of coupled high-speed maglev train-and-viaduct systems considering support flexibility[J]. Vehicle System Dynamics, 2019, 57(2): 161-191. doi: 10.1080/00423114.2018.1450517
|
| [18] |
SHI Y, MA W H, LI M, et al. Research on dynamics of a new high-speed maglev vehicle[J]. Vehicle System Dynamics, 2022, 60(3): 721-742. doi: 10.1080/00423114.2020.1838568
|
| [19] |
OKUBO T, UEDA N, OHASHI S. Effective control method of the active damper system against the multidirectional vibration in the superconducting magnetically levitated bogie[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 2541609.
|
| [20] |
刘士苋,王磊,王路忠,等. 电动悬浮列车及车载超导磁体研究综述[J]. 西南交通大学学报,2023,58(4): 734-753. doi: 10.3969/j.issn.0258-2724.20220621
LIU Shixian, WANG Lei, WANG Luzhong, et al. Review on electrodynamic suspension trains and on-board superconducting magnets[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 734-753. doi: 10.3969/j.issn.0258-2724.20220621
|
| [21] |
胡叙洪,吕建军,袁伟,等. 低真空管道磁浮交通技术[M]. 北京:中国铁道出版社,2023.
|
| [22] |
GALLUZZI R, CIRCOSTA S, AMATI N, et al. A multi-domain approach to the stabilization of electrodynamic levitation systems[J]. Journal of Vibration and Acoustics, 2020, 142(6): 061004.1-061004.12. doi: 10.1115/1.4046952
|
| [23] |
王美琪,曾思恒,李源,等. 二自由度磁浮列车悬浮系统时滞控制研究[J]. 西南交通大学学报,2024,59(4): 812-822. doi: 10.3969/j.issn.0258-2724.20230282
WANG Meiqi, ZENG Siheng, LI Yuan, et al. Research on time lag control of levitation system of two-degree-of-freedom magnetic levitation train[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 812-822. doi: 10.3969/j.issn.0258-2724.20230282
|
| [24] |
FUJIMOTO T, AIBA M, SUZUKI H, et al. Characteristics of electromagnetic force of ground coil for levitation and guidance at the yamanashi maglev test line[J]. Quarterly Report of RTRI, 2000, 41(2): 63-67. doi: 10.2219/rtriqr.41.63
|
| [25] |
邵壮,张东风,马佳骏. 磁悬浮轨道道岔线形设计及计算方法研究[J/OL]. 铁道标准设计,2024:1-8 [2024-06-12]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=TDBS20240607007&dbname=CJFD&dbcode=CJFQ.
SHAO Zhuang, ZHANG Dongfeng, MA Jiajun. Research on linear design and calculation method of maglev track turnout[J/OL]. China Industrial Economics, 2024: 1-8 [2024-06-12]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=TDBS20240607007&dbname=CJFD&dbcode=CJFQ.
|
| [26] |
中华人民共和国住房和城乡建设部. 高速磁浮交通设计标准:CJJ/T 310—2021[S]. 北京:中国建筑工业出版社,2021.
|