• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 56 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
SONG Zhanfeng, GUO Jiejia, LI Jun. Fitting a Straight-Line to Data Points with Correlated Noise Between Coordinate Components under Constraints[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1283-1289. doi: 10.3969/j.issn.0258-2724.20200120
Citation: SONG Zhanfeng, GUO Jiejia, LI Jun. Fitting a Straight-Line to Data Points with Correlated Noise Between Coordinate Components under Constraints[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1283-1289. doi: 10.3969/j.issn.0258-2724.20200120

Fitting a Straight-Line to Data Points with Correlated Noise Between Coordinate Components under Constraints

doi: 10.3969/j.issn.0258-2724.20200120
  • Received Date: 24 Mar 2020
  • Rev Recd Date: 03 Aug 2020
  • Available Online: 24 Aug 2020
  • Publish Date: 24 Aug 2020
  • Straight-line fitting has received extensive attention both in curve fitting research and engineering practice. The methods of ordinary least squares and orthogonal least squares fitting ignore the existence of the observation error correlation. The coordinate pairs of surveying points, obtained by a total station in railway realignment, not only have different levels of precision but also have correlated noise. Meanwhile, straight-line fitting is usually under constraints in the realignment. Thus, a straight-line fitting model was derived based on the maximum likelihood estimation and Lagrange conditional extremum theory, considering constraints and correlated noise between coordinate components, and a Gauss-Newton algorithm was presented to search for the optimum. The method was tested with the field surveying data. Experimental results show that the proposed fitting method is capable of estimating straight-line parameters and their precisions in all circumstances by specifying stochastic models. When considering correlated noise, the precision of estimated parameters improve 9.2% with a constraint and improve 2.7% without constraints, respectively. The Gauss-Newton algorithm takes only 6 and 3 iteration times with a constraint and without constraints respectively, for locating the optimum straight-line.

     

  • loading
  • [1]
    KRYSTEK M, ANTON M. A least-squares algorithm for fitting data points with mutually correlated coordinates to a straight line[J]. Measurement Science and Technology, 2011, 22(3): 035101.1-035101.9.
    [2]
    PETROLINI A. Linear least squares fit when both variables are affected by equal uncorrelated errors[J]. American Journal of Physics, 2014, 82(12): 1178-1185.
    [3]
    丁克良,沈云中,欧吉坤. 整体最小二乘法直线拟合[J]. 辽宁工程技术大学学报(自然科学版),2010,29(1): 44-47.

    DING Keliang, SHEN Yunzhong, OU Jikun. Methods of line-fitting based on total least-squares[J]. Journal of Liaoning Technical University (Natural Science), 2010, 29(1): 44-47.
    [4]
    宋占峰,彭欣,吴清华. 基于中线坐标的地铁调线优化算法[J]. 西南交通大学学报,2014,49(4): 656-661. doi: 10.3969/j.issn.0258-2724.2014.04.015

    SONG Zhanfeng, PENG Xin, WU Qinghua. Optimization algorithm for horizontal realignment based on coordinate of metro centerline[J]. Journal of Southwest Jiaotong University, 2014, 49(4): 656-661. doi: 10.3969/j.issn.0258-2724.2014.04.015
    [5]
    宋占峰,王健,李军. 缓和曲线正交拟合的Levenberg-Marquardt算法[J]. 西南交通大学学报,2020,55(1): 144-149. doi: 10.3969/j.issn.0258-2724.20190130

    SONG Zhanfeng, WANG Jian, LI Jun. Levenberg-Marquardt algorithm for orthogonal fitting of transition curves[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 144-149. doi: 10.3969/j.issn.0258-2724.20190130
    [6]
    KARL P. On lines and planes of closest fit to systems of points in space[J]. Philosophical Magazine, 1901, 2(11): 559-572.
    [7]
    刘经南,曾文宪,徐培亮. 整体最小二乘估计的研究进展[J]. 武汉大学学报(信息科学版),2013,38(5): 505-512.

    LIU Jingnan, ZENG Wenxian, XU Peiliang. Overview of total least squares methods[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 505-512.
    [8]
    KRYSTEK M, ANTON M. A weighted total least-squares algorithm for fitting a straight line[J]. Measurement Science and Technology, 2007, 18(11): 3438-3442. doi: 10.1088/0957-0233/18/11/025
    [9]
    SONG Z F, DING H, LI J, et al. Circular curve-fitting method for field surveying data with correlated noise[J]. Journal of Surveying Engineering, 2018, 144(4): 04018010.1-04018010.9.
    [10]
    AMIRI-SIMKOOEI A R, ZANGENEH-NEJAD F, ASGARI J, et al. Estimation of straight line parameters with fully correlated coordinates[J]. Measurement, 2014, 48: 378-386. doi: 10.1016/j.measurement.2013.11.005
    [11]
    SHEN Y F, LI B F, CHEN Y. An iterative solution of weighted total least-squares adjustment[J]. Journal of Geodesy, 2011, 85(4): 229-238. doi: 10.1007/s00190-010-0431-1
    [12]
    鲁铁定,陶本藻,周世健. 基于整体最小二乘法的线性回归建模和解法[J]. 武汉大学学报(信息科学版),2008,33(5): 504-507.

    LU Tieding, TAO Benzao, ZHOU Shijian. Modeling and algorithm of linear regression based on total least squares[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 504-507.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article views(432) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return