Citation: | ZHANG Yue, XU Yuanping, ZHOU Jin, ZHOU Yang. Vibration and Stability Evaluation of Magnetically Suspended Fluid Machinery Based on API 617[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 986-992. doi: 10.3969/j.issn.0258-2724.20240340 |
To evaluate the design rationality and operation reliability of the magnetically suspended fluid machinery, the API 617 standard was applied to analyze its vibration and stability. Firstly, the relevant specifications and requirements for magnetically suspended fluid machinery in the API 617 standard were introduced. Then, a magnetically suspended blower was taken as the research object, and rotor dynamics analysis, closed-loop transfer function testing, vibration analysis, stability evaluation, and other work were carried out based on the API 617 standard. The results indicate that all indicators meet the API 617 standard requirements. The separation margins between the rotor operating speed and the rigid body critical speed and the first-order bending critical speed are 69.7% and 53.8%, respectively, and the design is reasonable. The modelling of the magnetically suspended rotor system is accurate and can be used to predict the dynamic behavior of the rotor; the peak sensitivity transfer function values of the radial active magnetic bearing (AMB) system are all in zone A, while those of the axial AMB are in zone B, meeting the requirements for long-term and stable operation. The rotor vibration within the operating speed range is less than 10 μm, far below the vibration limit requirement.
[1] |
JASTRZEBSKI R P, LIUKKONEN O. Analysis of a segmented axial active magnetic bearing for multi-MW compressor applications[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28(5): 2799-2809. doi: 10.1109/TMECH.2023.3254812
|
[2] |
贺艳晖,甘杨俊杰,周亮. 主动磁悬浮轴承在余热发电机的应用研究[J]. 西南交通大学学报,2022,57(3): 657-664. doi: 10.3969/j.issn.0258-2724.20210860
HE Yanhui, GAN Yangjunjie, ZHOU Liang. Application of active magnetic bearing in waste heat generator[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 657-664. doi: 10.3969/j.issn.0258-2724.20210860
|
[3] |
International Organization for Standardization. Mechanical vibration—vibration of rotating machinery equipped with active magnetic bearings: part 1: vocabulary: ISO 14839-1: 2018[S]. Geneva: [s.n.], 2018.
|
[4] |
International Organization for Standardization. Mechanical vibration—vibration of rotating machinery equipped with active magnetic bearings: part 2: evaluation of vibration: ISO 14839-2: 2004[S]. Geneva: [s.n.], 2004.
|
[5] |
International Organization for Standardization. Mechanical vibration—vibration of rotating machinery equipped with active magnetic bearings: part 3: evaluation of stability margin: ISO 14839-3: 2006[S]. Geneva: [s.n.], 2006.
|
[6] |
International Organization for Standardization. Mechanical vibration—vibration of rotating machinery equipped with active magnetic bearings: part 4: technical guidelines: ISO 14839-4: 2012[S]. Geneva: [s.n.], 2012.
|
[7] |
International Organization for Standardization. Mechanical vibration—vibration of rotating machinery equipped with active magnetic bearings: part 5: touch-down bearings: ISO 14839-5: 2022[S]. Geneva: [s.n.], 2022.
|
[8] |
American Petroleum Institute. Axial and centrifugal compressors and expanders-compressors for petroleum, chemical and gas industry services: API 617. 9th Edition[S]. Washington D. C.: API Publishing Services, 2022.
|
[9] |
崔恒斌,周瑾,董继勇,等. 磁悬浮旋转机械振动稳定性实例研究[J]. 浙江大学学报(工学版),2018,52(4): 635-640,686.
CUI Hengbin, ZHOU Jin, DONG Jiyong, et al. Case study on vibration stability of rotating machinery equipped with active magnetic bearings[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(4): 635-640,686.
|
[10] |
KHATRIA R, HAWKINS L. Applicability of API 617 8th ed. and ISO 14839-3 in evaluating the dynamic stability of AMB-supported compressors[C]// Proceedings of the 16th International Symposium on Magnetic Bearings. Beijing: [s.n.], 2018.
|
[11] |
SMITHANI J, PAUL Y. Applying API 617, 8th edition to expander-compressors with active magnetic bearings[C]//Proceedings of the 44th Turbomachinery & 31st Pump Symposium. Houston: [s.n.], 2015.
|
[12] |
SWANSON E, HAWKINS L, MASALA A. New active magnetic bearing requirements for compressors in API 617 eight edition[C]//Proceedings of the 43rd Turbomachinery Symposium. Houston: [s.n.], 2014.
|
[13] |
胡永,肖忠会,王玉旌,等. 电磁轴承支撑系统转子动力学分析[C]//第十六届沈阳科学学术年会论文集:理工农医. 沈阳:[出版社不详], 2019.
|
[14] |
张越,周瑾,金超武,等. 一种磁悬浮旋转机械系统在线频率响应测试方法:中国,ZL202110545692.8[P]. 2022-08-12.
|
[15] |
ZHANG Y, ZHOU J, ZHANG Y B, et al. Modelling and vibration response of a magnetically suspended flexible rotor considering base motion[J]. Applied Mathematical Modelling, 2023, 118: 518-540. doi: 10.1016/j.apm.2023.01.020
|
[16] |
周扬,周瑾,王艺宇,等. 考虑界面接触的磁悬浮轴承-转子系统建模及鲁棒控制[J]. 西南交通大学学报,2024,59(4): 755-765. doi: 10.3969/j.issn.0258-2724.20230510
ZHOU Yang, ZHOU Jin, WANG Yiyu, et al. Modeling and robust control of magnetic bearing-rotor system considering interface contact[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 755-765. doi: 10.3969/j.issn.0258-2724.20230510
|
[17] |
金超武,辛宇,周扬,等. 高温磁悬浮轴承-转子系统建模与动力学分析[J]. 西南交通大学学报,2024,59(4): 746-754,822. doi: 10.3969/j.issn.0258-2724.20230667
JIN Chaowu, XIN Yu, ZHOU Yang, et al. Modeling and dynamics analysis of high-temperature magnetic bearing-rotor system[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 746-754,822. doi: 10.3969/j.issn.0258-2724.20230667
|
[18] |
XU Y P, ZHOU J, DI L, et al. Active magnetic bearings dynamic parameters identification from experimental rotor unbalance response[J]. Mechanical Systems and Signal Processing, 2017, 83: 228-240. doi: 10.1016/j.ymssp.2016.06.009
|
[1] | SUN Yougang, ZHANG Dandan, JI Wen, XU Junqi. Fuzzy Compensation-Based Non-Singular Terminal Sliding Mode Control of Maglev Vehicle Levitation System[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 803-811. doi: 10.3969/j.issn.0258-2724.20240499 |
[2] | ZHOU Danfeng, ZHU Pengxiang, QU Minghe, WANG Lianchun, LI Jie. Influence of Bridge Parameters on Vehicle-Bridge Coupling Stability of Maglev System[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 823-832. doi: 10.3969/j.issn.0258-2724.20240381 |
[3] | NI Fei, FAN Lin, XU Junqi, LIN Guobin, JIA Wantao. Global Sensitivity Analysis of Single-Point Levitation System for High-Speed Maglev Train Based on Sobol’ Method[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 812-822. doi: 10.3969/j.issn.0258-2724.20240545 |
[4] | GONG Lei, HE Pai, SHI Yong, ZHU Changsheng. Non-Singular Fast Terminal Sliding Mode Rotor Position Control of Active Magnetic Bearings[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 976-985. doi: 10.3969/j.issn.0258-2724.20240090 |
[5] | LIU Xin, YUAN Pengyu. Modeling and Simulation of a Novel Heteropolar Radial Hybrid Magnetic Bearing[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 944-953. doi: 10.3969/j.issn.0258-2724.20230315 |
[6] | XU Xianze, SONG Mingxing, GONG Yongxing, XU Fengqiu, WANG Dijin, SUI Bowen, GUO Qingquan. Fractional-Order Sliding Mode Control for Maglev Rotary Table Based on Disturbance Compensation[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 766-775. doi: 10.3969/j.issn.0258-2724.20230412 |
[7] | ZHOU Yang, ZHOU Jin, WANG Yiyu, ZHANG Yue, XU Yuanping. Modeling and Robust Control of Magnetic Bearing-Rotor System Considering Interface Contact[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 755-765. doi: 10.3969/j.issn.0258-2724.20230510 |
[8] | JIN Chaowu, XIN Yu, ZHOU Yang, ZHAO Ruijin, ZHOU Jin, XU Yuanping. Modeling and Dynamics Analysis of High-Temperature Magnetic Bearing-Rotor System[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 746-754, 822. doi: 10.3969/j.issn.0258-2724.20230667 |
[9] | JIN Junjie, WANG Yanfeng, XU Chengcheng, LU Wenxuan, ZHANG Xiaoyou, SUN Feng, XU Fangchao. Design and Magnetic Force Characteristic Analysis of Magnetic Levitation Bearing for Artificial Kidney Pumps[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 795-803. doi: 10.3969/j.issn.0258-2724.20230090 |
[10] | SHI Hongfu, DENG Zigang, HUANG Huan, ZHU Hanlin, XIANG Yuqing, ZHENG Jun, LIANG Le, YANG Jing. Design and Characteristics of Null-Flux Permanent Magnet Electrodynamic Suspension System[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 853-862. doi: 10.3969/j.issn.0258-2724.20211062 |
[11] | SHI Wenku, ZHANG Shuguang, CHEN Zhiyong, ZHANG Youkun. Modeling and Vibration Analysis of Semi-active Seat Suspension with Magnetorheological Damper[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 253-260. doi: 10.3969/j.issn.0258-2724.20210882 |
[12] | SONG Chunsheng, YIN Rui, WEI Zihang, WANG Peng. Simulation on Decoupling Control of Maglev Flexible Rotor System[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 761-772. doi: 10.3969/j.issn.0258-2724.20220773 |
[13] | LUO Cheng, ZHANG Kunlun, WANG Ying. Stability Control of Electrodynamic Suspension with Permanent Magnet and Electromagnet Hybrid Halbach Array[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 574-581. doi: 10.3969/j.issn.0258-2724.20210868 |
[14] | DENG Zigang, LIU Zongxin, LI Haitao, ZHANG Weihua. Development Status and Prospect of Maglev Train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474, 530. doi: 10.3969/j.issn.0258-2724.20220001 |
[15] | HU Yusheng, LI Liyi, GUO Weilin, LI Xin. Support Stiffness of Magnetic Bearing Based on Unequal Magnetic Circuit Area Design Method[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 648-656. doi: 10.3969/j.issn.0258-2724.20210888 |
[16] | GUAN Xudong, ZHOU Jin, JIN Chaowu, YAO Runhui. Misalignment Vibration Detection of Magnetic Suspension Multi-Span Rotors Based on SOGI-FLL-WPF[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 665-674. doi: 10.3969/j.issn.0258-2724.20210810 |
[17] | CAO Lilin, CAO Dong, YU Guojun. Two Simplified Models for Human-Structure Vertical Interaction[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1166-1172. doi: 10.3969/j.issn.0258-2724.2018.06.011 |
[18] | WANG Keren, LUO Shihui, ZHANG Jiye. Design of Magnetic Levitation Controller and Static Stability Analysis[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 118-126. doi: 10.3969/j.issn.0258-2724.2017.01.017 |
[19] | LI Songqi, ZHANG Kunlun. Self-excited Vibration of Single-Magnet Suspension System: Stability Analysis and Inhibition[J]. Journal of Southwest Jiaotong University, 2015, 28(3): 410-416. doi: 10.3969/j.issn.0258-2724.2015.03.004 |