• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
ZHANG Wenbai, LIN Guobin, KANG Jinsong, ZHAO Yuanzhe, LIAO Zhiming. Sensorless Control Method of High-Frequency Injection for Long-Stator Synchronous Motor of Maglev Trains Considering Phase Shift Compensation[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 1032-1041. doi: 10.3969/j.issn.0258-2724.20240310
Citation: ZHANG Wenbai, LIN Guobin, KANG Jinsong, ZHAO Yuanzhe, LIAO Zhiming. Sensorless Control Method of High-Frequency Injection for Long-Stator Synchronous Motor of Maglev Trains Considering Phase Shift Compensation[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 1032-1041. doi: 10.3969/j.issn.0258-2724.20240310

Sensorless Control Method of High-Frequency Injection for Long-Stator Synchronous Motor of Maglev Trains Considering Phase Shift Compensation

doi: 10.3969/j.issn.0258-2724.20240310
  • Received Date: 27 Jun 2024
  • Rev Recd Date: 29 Oct 2024
  • Available Online: 08 Mar 2025
  • Publish Date: 08 Nov 2024
  • In order to study the influence of high-frequency signal injection (HFSI) response to electrical angle phase shift on the low-speed control accuracy of maglev trains, the constraint relationship between the control delay and the sampling delay on the angular error lag was considered, and a compensation method for minimizing the angle error of sensorless estimation was proposed. Firstly, a zero-low-speed HFSI model for long-stator synchronous motor (LSM) of high-speed maglev trains was established, and a high-frequency response current model was constructed by using the estimation-real-delay coordinate transformation theory. Secondly, by analyzing the influence of system delay on angular error in a high-power electric drive system, the high-frequency response current model with estimated angular phase shift error was reconstructed. Then, the objective function for the discrete estimation of the angular error was designed, and the bisection method considering the gradient change was proposed to calculate system delay and angular error online. Finally, the algorithm was verified by the low-speed test platform of maglev motors. The experimental results show that compared with the uncompensated sensorless control, when the set current is 20, 21 A, and 22 A, the estimated angular error is decreased by 73.3%, 70.4%, and 72.1% by the proposed compensation method considering phase shift lag compensation. When the set speed is 0.8 m/s, 0.9 m/s, and 1.0 m/s, the estimated angular error is decreased by 67.9%, 70.5%, and 75.5%, and the speed tracking error is decreased by 50% on average.

     

  • [1]
    丁叁叁. 时速600公里高速磁浮交通系统[M]. 上海:上海科学技术出版社,2021.
    [2]
    林国斌,刘万明,徐俊起,等. 中国高速磁浮交通的发展机遇与挑战[J]. 前瞻科技,2023,2(4): 7-18.

    LING Guobin, LIU Wanming, XU Junqi, et al. Opportunities and challenges for the development of high-speed maglev transportation in China[J]. Science and Technology Foresight, 2023, 2(4): 7-18.
    [3]
    朱进权,葛琼璇,张波,等. 考虑悬浮系统影响的高速磁悬浮列车牵引控制策略[J]. 电工技术学报,2022,37(12): 3087-3096.

    ZHU Jinquan, GE Qiongxuan, ZHANG Bo, et al. Traction control strategy of high-speed maglev considering the influence of suspension system[J]. Transactions of China Electrotechnical Society, 2022, 37(12): 3087-3096.
    [4]
    康劲松,丁浩,倪菲,等. 计及悬浮系统影响的高速磁浮直线同步电机建模方法[J]. 西南交通大学学报,2024,59(4): 729-736. doi: 10.3969/j.issn.0258-2724.20230431

    KANG Jinsong, DING Hao, NI Fei, et al. Modeling of high-speed maglev linear synchronous motors considering influence of suspension system[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 729-736. doi: 10.3969/j.issn.0258-2724.20230431
    [5]
    ZHU J Q, GE Q X, SUN P K. Extended state observer-based sensorless control for high-speed maglev application in single-feeding mode and double-feeding mode[J]. IEEE Transactions on Transportation Electrification, 2022, 8(1): 1350-1361. doi: 10.1109/TTE.2021.3093342
    [6]
    WANG G L, VALLA M, SOLSONA J. Position sensorless permanent magnet synchronous machine drives—a review[J]. IEEE Transactions on Industrial Electronics, 2020, 67(7): 5830-5842. doi: 10.1109/TIE.2019.2955409
    [7]
    KIM H, JUNG H S, SUL S K. Stator winding temperature and magnet temperature estimation of IPMSM based on high-frequency voltage signal injection[J]. IEEE Transactions on Industrial Electronics, 2023, 70(3): 2296-2306. doi: 10.1109/TIE.2022.3174285
    [8]
    ORTOMBINA L, BERTO M, ALBERTI L. Sensorless drive for salient synchronous motors based on direct fitting of elliptical-shape high-frequency currents[J]. IEEE Transactions on Industrial Electronics, 2023, 70(4): 3394-3403. doi: 10.1109/TIE.2022.3177753
    [9]
    吴婷. 永磁同步电机全速范围无位置传感器控制策略研究[D]. 长沙:湖南大学,2022.
    [10]
    王涛,黄景春,杨天昊. 基于改进的Super-Twisting滑模观测器的永磁同步电机无传感器控制[J]. 西南交通大学学报,2025,60(3):445-453.

    WANG Tao, HUANG Jinchun, YANG Tianhao. Sensorless control of permanent magnet synchronous motor based on improved super-twisting sliding mode observer[J]. Journal of Southwest Jiaotong University, 2025, 60(3):445-453.
    [11]
    沈泽微,蒋栋,陈嘉楠. 一种通用的PWM变流器开关脉冲延时补偿策略[J]. 中国电机工程学报,2021,41(9): 2990-2998.

    SHEN Zewei, JIANG Dong, CHEN Jianan. A general switch pulse delay compensation strategy for PWM converter[J]. Proceedings of the CSEE, 2021, 41(9): 2990-2998.
    [12]
    鄢永,黄文新. 基于闭环电流预测的永磁同步电机电流环延时补偿策略研究[J]. 中国电机工程学报,2022,42(10): 3786-3795.

    YAN Yong, HUANG Wenxin. Research on delay compensation strategy of permanent magnet synchronous motor based on closed-loop current prediction[J]. Proceedings of the CSEE, 2022, 42(10): 3786-3795.
    [13]
    王志强,郭伟鹏,桑孜良,等. 高速磁浮列车导向系统优化控制方法研究[J]. 西南交通大学学报,2025,60(4):833-841,864.

    WANG Zhiqiang, GUO Weipeng, SANG Ziliang, et al. Optimization control for the guidance system of high-speed maglev train [J]. Journal of Southwest Jiaotong University, 2025, 60(4):833-841,864.
    [14]
    WANG Y R, XU Y X, ZOU J B. Sliding-mode sensorless control of PMSM with inverter nonlinearity compensation[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 10206-10220. doi: 10.1109/TPEL.2018.2890564
    [15]
    WU X, LI C, ZHANG Y Y, et al. Sensorless control of IPMSM equipped with LC sinusoidal filter based on full-order sliding mode observer and feedforward QPLL[J]. IEEE Transactions on Power Electronics, 2024, 39(7): 8072-8085. doi: 10.1109/TPEL.2024.3390050
    [16]
    LIU Z H, NIE J, WEI H L, et al. A newly designed VSC-based current regulator for sensorless control of PMSM considering VSI nonlinearity[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4420-4431. doi: 10.1109/JESTPE.2020.3033037
    [17]
    WU S H, HU C X, ZHAO Z Y, et al. High-accuracy sensorless control of permanent magnet linear synchronous motors for variable speed trajectories[J]. IEEE Transactions on Industrial Electronics, 2024, 71(5): 4396-4406. doi: 10.1109/TIE.2023.3288145
    [18]
    ZHANG H, LIANG W R, GAO L Y, et al. Switching angle fitting-based delay compensation with IPLL for IPMSM sensorless drives under SHEPWM[J]. IEEE Transactions on Transportation Electrification, 2024, 10(1): 660-669. doi: 10.1109/TTE.2023.3276878
    [19]
    CAO X Q, GE Q X, ZHU J Q, et al. Periodic traction force fluctuations suppression strategy of maglev train based on flux linkage observation and harmonic current injection[J]. IEEE Transactions on Transportation Electrification, 2023, 9(2): 3434-3451. doi: 10.1109/TTE.2022.3221193
    [20]
    ZHANG H, LIU W G, CHEN Z, et al. An overall system delay compensation method for IPMSM sensorless drives in rail transit applications[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 1316-1329. doi: 10.1109/TPEL.2020.3015742
    [21]
    KANG J S, DING H, ZOU P R, et al. Model predictive thrust force control for 3L-NPC fed linear synchronous motor of maglev train[J]. IEEE Transactions on Transportation Electrification, 2024, 1: 3368071.1-3368071.9.
    [22]
    KANG J S, MU S Y, NI F. Improved EL model of long stator linear synchronous motor via analytical magnetic coenergy reconstruction method[J]. IEEE Transactions on Magnetics, 2020, 56(8): 3002964.1-3002964.13.
    [23]
    张昕,翟凌露,王舰深,等. 基于加权融合的常导高速磁浮列车UKF定位算法[J]. 西南交通大学学报,2024,59(4): 832-838. doi: 10.3969/j.issn.0258-2724.20230501

    ZHANG Xin, ZHAI Linglu, WANG Jianshen, et al. Weighted fusion-based unscented Kalman filter positioning algorithm for normal-conducting high-speed maglev trains[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 832-838. doi: 10.3969/j.issn.0258-2724.20230501
    [24]
    WU T, LUO D R, WU X, et al. Square-wave voltage injection based PMSM sensorless control considering time delay at low switching frequency[J]. IEEE Transactions on Industrial Electronics, 2022, 69(6): 5525-5535. doi: 10.1109/TIE.2021.3094444
  • Relative Articles

    [1]ZHAO Chunfa, LI Yuhan, PENG Yeye, YANG Jing, NING Xiaofang, FENG Yang. Aerodynamic Characteristics of Open Wire of Superconducting Maglev Train and Its Influence on Levitation State[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 793-802. doi: 10.3969/j.issn.0258-2724.20240470
    [2]ZHOU Danfeng, ZHU Pengxiang, QU Minghe, WANG Lianchun, LI Jie. Influence of Bridge Parameters on Vehicle-Bridge Coupling Stability of Maglev System[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 823-832. doi: 10.3969/j.issn.0258-2724.20240381
    [3]XU Fengqiu, QIU Yi, HE Jiawen, XU Xianze. Remanence Compensation of Maglev Planar Motor Based on Digital Twin Model[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 1050-1059. doi: 10.3969/j.issn.0258-2724.20240556
    [4]CAO Yi, ZHANG Min, LIU Jing, LIU Qinghui, MA Weihua, SHAN Lei, LI Tie. Fuzzy Comprehensive Evaluation and Improved Design of Levitation System for Medium and Low Speed Maglev Trains[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 874-883. doi: 10.3969/j.issn.0258-2724.20240190
    [5]SUN Yougang, ZHANG Dandan, JI Wen, XU Junqi. Fuzzy Compensation-Based Non-Singular Terminal Sliding Mode Control of Maglev Vehicle Levitation System[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 803-811. doi: 10.3969/j.issn.0258-2724.20240499
    [6]LI Zikang, DAI Chunhui, HUANG Cuicui, LONG Zhiqiang. Active Disturbance Rejection Speed Control for Maglev Trains Based on Multiple Population Genetic Algorithm[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 912-920. doi: 10.3969/j.issn.0258-2724.20240113
    [7]WANG Zhiqiang, GUO Weipeng, SANG Ziliang, LI Bowen, LONG Zhiqiang, LI Xiaolong. Optimized Control Method for Guidance System of High-Speed Maglev Train[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 833-841, 864. doi: 10.3969/j.issn.0258-2724.20230516
    [8]LIU Hongen, HU Minsheng, HU Hailin. Reinforcement Learning Braking Control of Maglev Trains Based on Self-Learning of Hybrid Braking Features[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 839-847. doi: 10.3969/j.issn.0258-2724.20230517
    [9]CHEN Ping, SHI Tiancheng, YU Mingyue, SHAN Lei. Self-Learning Model Reference Adaptive Levitation Control Strategy[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 799-807. doi: 10.3969/j.issn.0258-2724.20220752
    [10]ZHAI Mingda, ZHU Pengbo, LI Xiaolong, LONG Zhiqiang, LIU Xin, YANG Bin. Evaluation and Verification for Active Guidance Ability of EMS Maglev Train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 514-521. doi: 10.3969/j.issn.0258-2724.20210920
    [11]LI Songqi, LUO Cheng, ZHANG Kunlun. Correction of Magnetic Force of Hybrid Electromagnet Based on Magnetic Flux Leakage Compensation[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 604-609. doi: 10.3969/j.issn.0258-2724.20210843
    [12]WANG Keren, LUO Shihui, MA Weihua, CHEN Xiaohao, ZOU Ruiming. Vehicle-Guideway Coupling Vibration Comparative Analysis for Maglev Vehicles While Standing Still[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 282-289. doi: 10.3969/j.issn.0258-2724.20170891
    [13]JING Yongzhi, HE Fei, LIAO Haijun, WANG Ying, LIU Guoqing, DONG Jinwen. Temperature Compensation of Maglev Vehicle Gap Sensor Based on RBF-NN Optimized by PSO[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 367-373, 384. doi: 10.3969/j.issn.0258-2724.2018.02.020
    [14]WANG Keren, LUO Shihui, ZHANG Jiye. Design of Magnetic Levitation Controller and Static Stability Analysis[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 118-126. doi: 10.3969/j.issn.0258-2724.2017.01.017
    [15]ZHOU Dajin, CUI Chenyu, MA Jiaqing, ZHAO Lifeng, ZHANG Yong, ZHAO Yong. Starting Characteristics of Linear Motor in Evacuated Tube HTS Side-Suspended Maglev System[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 750-758. doi: 10.3969/j.issn.0258-2724.2016.04.021
    [16]BIHai-qua, LEI Bo, ZHANG Wei-hua. Numerical Calculation for Turbulent Flow around TR Maglev Train[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 5-8.
    [17]TANGHuai-ping, GAO Fang-qing. Experimental Research on Dynamic Characteristics and Coupled Vibration of a Maglev Train System[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 149-152.
    [18]HUJi-shi, PANHui-long. A Design Basis for Collector of Maglev Trains[J]. Journal of Southwest Jiaotong University, 2000, 13(2): 170-173.
    [19]Zeng Youwen, WangShaohua, ZhanKunlun. A Study on the Vehicle-Guideway Coupling Vibration and Suspension Parameters of Maglev Train[J]. Journal of Southwest Jiaotong University, 1999, 12(2): 168-173.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-07010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.4 %FULLTEXT: 24.4 %META: 66.0 %META: 66.0 %PDF: 9.6 %PDF: 9.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 26.9 %其他: 26.9 %其他: 1.3 %其他: 1.3 %上海: 0.6 %上海: 0.6 %北京: 4.5 %北京: 4.5 %十堰: 1.3 %十堰: 1.3 %南京: 1.9 %南京: 1.9 %南阳: 0.6 %南阳: 0.6 %哈尔滨: 0.6 %哈尔滨: 0.6 %哥伦布: 1.3 %哥伦布: 1.3 %天津: 2.6 %天津: 2.6 %宣城: 0.6 %宣城: 0.6 %张家口: 3.2 %张家口: 3.2 %成都: 0.6 %成都: 0.6 %扬州: 0.6 %扬州: 0.6 %杭州: 0.6 %杭州: 0.6 %松原: 0.6 %松原: 0.6 %武汉: 1.3 %武汉: 1.3 %池州: 0.6 %池州: 0.6 %沈阳: 1.3 %沈阳: 1.3 %洛阳: 0.6 %洛阳: 0.6 %淄博: 1.3 %淄博: 1.3 %温州: 0.6 %温州: 0.6 %漯河: 3.8 %漯河: 3.8 %玉溪: 0.6 %玉溪: 0.6 %石家庄: 7.7 %石家庄: 7.7 %芒廷维尤: 9.6 %芒廷维尤: 9.6 %芝加哥: 0.6 %芝加哥: 0.6 %西宁: 15.4 %西宁: 15.4 %西安: 0.6 %西安: 0.6 %诺沃克: 1.9 %诺沃克: 1.9 %赤峰: 0.6 %赤峰: 0.6 %运城: 0.6 %运城: 0.6 %遵义: 0.6 %遵义: 0.6 %邯郸: 1.3 %邯郸: 1.3 %郑州: 1.3 %郑州: 1.3 %重庆: 0.6 %重庆: 0.6 %长沙: 0.6 %长沙: 0.6 %其他其他上海北京十堰南京南阳哈尔滨哥伦布天津宣城张家口成都扬州杭州松原武汉池州沈阳洛阳淄博温州漯河玉溪石家庄芒廷维尤芝加哥西宁西安诺沃克赤峰运城遵义邯郸郑州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article views(102) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return