• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
LIU Hongen, HU Minsheng, HU Hailin. Reinforcement Learning Braking Control of Maglev Trains Based on Self-Learning of Hybrid Braking Features[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 839-847. doi: 10.3969/j.issn.0258-2724.20230517
Citation: LIU Hongen, HU Minsheng, HU Hailin. Reinforcement Learning Braking Control of Maglev Trains Based on Self-Learning of Hybrid Braking Features[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 839-847. doi: 10.3969/j.issn.0258-2724.20230517

Reinforcement Learning Braking Control of Maglev Trains Based on Self-Learning of Hybrid Braking Features

doi: 10.3969/j.issn.0258-2724.20230517
  • Received Date: 09 Oct 2023
  • Rev Recd Date: 16 Feb 2024
  • Available Online: 20 Apr 2024
  • Publish Date: 02 Mar 2024
  • Accurate and smooth parking is an essential goal for automatic driving braking control of maglev trains. The strong coupling of the electro-hydraulic hybrid braking state affects the medium and low-speed maglev trains during the stopping braking process, and the traditional braking control method based on the theoretical model of braking features makes it difficult to guarantee the parking accuracy and comfort of the maglev train. This paper proposed a reinforcement learning braking control method for maglev trains based on self-learning of hybrid braking features. First, a long short-term memory (LSTM) network was used to establish a hybrid braking feature model for maglev trains, and the self-learning of dynamic braking features was performed based on the operating environment and status data of maglev trains. Then, the reward function and learning strategy of reinforcement learning were updated according to the learning results of dynamic features, and a train braking optimization control method based on deep reinforcement learning was proposed. Finally, simulation experiments were carried out by using on-site operation data of medium and low-speed maglev trains. The experimental results show that the braking control method proposed in this paper improves comfort and parking accuracy by 41.18% and 22%, respectively, compared with the traditional method. It proves the effectiveness of the modeling and braking optimization control method in this paper.

     

  • [1]
    邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报,2022,57(3): 455-474,530.

    DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474,530.
    [2]
    吴萌岭,马天和,田春,等. 列车制动技术发展趋势探讨[J]. 中国铁道科学,2019,40(1): 134-144.

    WU Mengling, MA Tianhe, TIAN Chun, et al. Discussion on development trend of train braking technology[J]. China Railway Science, 2019, 40(1): 134-144.
    [3]
    李中奇,邢月霜. 动车组进站过程精准停车控制方法研究[J]. 系统仿真学报,2021,33(1): 149-158.

    LI Zhongqi, XING Yueshuang. Research on precision parking control method for EMU inbound process[J]. Journal of System Simulation, 2021, 33(1): 149-158.
    [4]
    周嘉俊,吴萌岭,刘宇康,等. 基于改进史密斯预估器的列车制动减速度控制研究[J]. 同济大学学报(自然科学版),2020,48(11): 1657-1667.

    ZHOU Jiajun, WU Mengling, LIU Yukang, et al. Train braking deceleration control based on improved Smith estimator[J]. Journal of Tongji University (Natural Science), 2020, 48(11): 1657-1667.
    [5]
    马天和,吴萌岭,田春. 城轨列车减速度反馈制动力闭环控制方法[J]. 仪器仪表学报,2021,42(4): 197-205.

    MA Tianhe, WU Mengling, TIAN Chun. Deceleration-feedback braking force closed-loop control method for urban rail train[J]. Chinese Journal of Scientific Instrument, 2021, 42(4): 197-205.
    [6]
    崔俊锋,王长远,王琦,等. 中低速磁浮列车制动过程的时滞补偿预测控制[J]. 铁道科学与工程学报,2024,21(2):735-747.

    CUI Junfeng, WANG Changyuan, WANG QI, et al. Time-delay compensation predictive control for braking process of medium-low speed maglev train[J]. Journal of Railway Science and Engineering,2024,21(2):735-747.
    [7]
    YIN J T, SU S, XUN J, et al. Data-driven approaches for modeling train control models: comparison and case studies[J]. ISA Transactions, 2020, 98: 349-363. doi: 10.1016/j.isatra.2019.08.024
    [8]
    LI Z, TANG T, GAO C H. Long short-term memory neural network applied to train dynamic model and speed prediction[J]. Algorithms, 2019, 12(8): 173.1-173.21.
    [9]
    YIN J T, NING C H, TANG T. Data-driven models for train control dynamics in high-speed railways[J]. Information Sciences:an International Journal, 2022, 600: 377-400. doi: 10.1016/j.ins.2022.04.004
    [10]
    LIU H E, YANG L J, YANG H. Cooperative optimal control of the following operation of high-speed trains[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 17744-17755. doi: 10.1109/TITS.2022.3163971
    [11]
    LIU H E, YANG H, WANG D H. Robust speed prediction of high-speed trains based on improved echo state networks[J]. Neural Computing and Applications, 2021, 33(7): 2351-2367. doi: 10.1007/s00521-020-05096-y
    [12]
    JIANG S Y, GAO H J, WANG X H, et al. Deep reinforcement learning based multi-level dynamic reconfiguration for urban distribution network: a cloud-edge collaboration architecture[J]. Global Energy Interconnection, 2023, 6(1): 1-14. doi: 10.1016/j.gloei.2023.02.001
    [13]
    QI X W, LUO Y D, WU G Y, et al. Deep reinforcement learning enabled self-learning control for energy efficient driving[J]. Transportation Research Part C:Emerging Technologies, 2019, 99: 67-81. doi: 10.1016/j.trc.2018.12.018
    [14]
    YANG Y, LI J T, PENG L L. Multi-robot path planning based on a deep reinforcement learning DQN algorithm[J]. CAAI Transactions on Intelligence Technology, 2020, 5(3): 177-183. doi: 10.1049/trit.2020.0024
    [15]
    张淼,张琦,刘文韬,等. 一种基于策略梯度强化学习的列车智能控制方法[J]. 铁道学报,2020,42(1): 69-75.

    ZHANG Miao, ZHANG Qi, LIU Wentao, et al. A policy-based reinforcement learning algorithm for intelligent train control[J]. Journal of the China Railway Society, 2020, 42(1): 69-75.
    [16]
    高豪,张亚东,郭进,等. 基于动态规划的列车节能运行两阶段优化方法[J]. 西南交通大学学报,2020,55(5): 946-954.

    GAO Hao, ZHANG Yadong, GUO Jin, et al. Two-stage optimization method of train energy-efficient operation based on dynamic programming[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 946-954.
    [17]
    蒋灵明,倪少权. 基于多智体强化学习的高效率货物列车运行动态调整方法[J]. 铁道学报,2023,45(8): 27-35.

    JIANG Lingming, NI Shaoquan. High-efficiency freight train rescheduling enabled by multi-agent reinforcement learning[J]. Journal of the China Railway Society, 2023, 45(8): 27-35.
    [18]
    SHANG M Y, ZHOU Y H, FUJITA H. Deep reinforcement learning with reference system to handle constraints for energy-efficient train control[J]. Information Sciences, 2021, 570: 708-721. doi: 10.1016/j.ins.2021.04.088
    [19]
    LIU W T, SU S, TANG T, et al. A DQN-based intelligent control method for heavy haul trains on long steep downhill section[J]. Transportation Research Part C: Emerging Technologies, 2021, 129(10): 103249.1-103249.21 .
    [20]
    WANG H N, LIU N, ZHANG Y Y, et al. Deep reinforcement learning: a survey[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(12): 1726-1744.
    [21]
    Wang Y, Chardonnet J R, Merienne F. Speed profile optimization for enhanced passenger comfort: An optimal control approach[C]//2018 21st International Conference on Intelligent Transportation Systems (ITSC). [S.l.]: IEEE, 2018: 723-728.
    [22]
    万里鹏,兰旭光,张翰博,等. 深度强化学习理论及其应用综述[J]. 模式识别与人工智能,2019,32(1): 67-81.

    WAN Lipeng, LAN Xuguang, ZHANG Hanbo, et al. A review of deep reinforcement learning theory and application[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(1): 67-81.
  • Relative Articles

    [1]ZHOU Danfeng, ZHU Pengxiang, QU Minghe, WANG Lianchun, LI Jie. Influence of Bridge Parameters on Vehicle-Bridge Coupling Stability of Maglev System[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 823-832. doi: 10.3969/j.issn.0258-2724.20240381
    [2]SUN Yougang, ZHANG Dandan, JI Wen, XU Junqi. Fuzzy Compensation-Based Non-Singular Terminal Sliding Mode Control of Maglev Vehicle Levitation System[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 803-811. doi: 10.3969/j.issn.0258-2724.20240499
    [3]CAO Yi, ZHANG Min, LIU Jing, LIU Qinghui, MA Weihua, SHAN Lei, LI Tie. Fuzzy Comprehensive Evaluation and Improved Design of Levitation System for Medium and Low Speed Maglev Trains[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 874-883. doi: 10.3969/j.issn.0258-2724.20240190
    [4]ZHANG Wenbai, LIN Guobin, KANG Jinsong, ZHAO Yuanzhe, LIAO Zhiming. Sensorless Control Method of High-Frequency Injection for Long-Stator Synchronous Motor of Maglev Trains Considering Phase Shift Compensation[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 1032-1041. doi: 10.3969/j.issn.0258-2724.20240310
    [5]LI Zikang, DAI Chunhui, HUANG Cuicui, LONG Zhiqiang. Active Disturbance Rejection Speed Control for Maglev Trains Based on Multiple Population Genetic Algorithm[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 912-920. doi: 10.3969/j.issn.0258-2724.20240113
    [6]WANG Zhiqiang, GUO Weipeng, SANG Ziliang, LI Bowen, LONG Zhiqiang, LI Xiaolong. Optimized Control Method for Guidance System of High-Speed Maglev Train[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 833-841, 864. doi: 10.3969/j.issn.0258-2724.20230516
    [7]GUO Yang, GAO Yuan, CHENG Shaochi, WANG Xiaonan. Optimization Control Strategy for Low-Altitude and Single-Layer Unmanned Aerial Vehicle Network Coverage[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 890-897. doi: 10.3969/j.issn.0258-2724.20230535
    [8]CHEN Ping, SHI Tiancheng, YU Mingyue, SHAN Lei. Self-Learning Model Reference Adaptive Levitation Control Strategy[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 799-807. doi: 10.3969/j.issn.0258-2724.20220752
    [9]SUN Yougang, XU Junqi, HE Zhenyu, LI Fengxing, CHEN Chen, LIN Guobin. Sliding Mode Cooperative Control of Multi-Electromagnet Suspension System Based on Error Cross Coupling[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 558-565. doi: 10.3969/j.issn.0258-2724.20210924
    [10]QIAO Qingfeng, YANG Weidong, ZHU Qi, CHEN Guangxiong. Generation Mechanism of Railway Disc Brake Squeal and Its Suppression Method[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 62-67. doi: 10.3969/j.issn.0258-2724.20190799
    [11]WANG Keren, LUO Shihui, ZHANG Jiye. Design of Magnetic Levitation Controller and Static Stability Analysis[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 118-126. doi: 10.3969/j.issn.0258-2724.2017.01.017
    [12]ZHENG Taixiong, MA Fulei, YANG Yong. Control Method of Vehicle Directional Stability for Automobile Anti-lock Braking System[J]. Journal of Southwest Jiaotong University, 2014, 27(2): 276-282. doi: 10.3969/j.issn.0258-2724.2014.02.014
    [13]MA Lei, ZHANG Wenxu, DAI Chaohua. A Review of Developments in Reinforcement Learning for Multi-robot Systems[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 1032-1044. doi: 10.3969/j.issn.0258-2724.2014.06.015
    [14]WANG Fei, MU Weiwei, DONG Jiankang. Aircraft Departure Slot Control Method Based on Multi-objective Optimization[J]. Journal of Southwest Jiaotong University, 2012, 25(4): 680-685. doi: 10.3969/j.issn.0258-2724.2012.04.023
    [15]SUN Ren-Yun, LI Zhi. Fuzzy Self-Tuning of PID Parameters for Automobile Sensotronic Braking Control[J]. Journal of Southwest Jiaotong University, 2010, 23(3): 378-383. doi: 10. 3969/ j. issn. 0258-2724.
    [16]SHEN Yuanxia, WANG Guoyin. Data-Driven Q-Learning in Dynamic Environment[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 877-881.
    [17]FENGXiao-yun, ZHAO Dong-mei, LI Zhi. A New Algorithm for Fuzzy Multi-objective Prediction Control Based on Satisfactory Optimization[J]. Journal of Southwest Jiaotong University, 2002, 15(1): 99-102.
    [18]ZHANGXiang, ZHANGKun-lun, LIANJi-san. Simulation Study on the Control Systems of Mechanical Braking of Maglev Trains[J]. Journal of Southwest Jiaotong University, 2002, 15(4): 412-416.
    [19]TANGHuai-ping, GAO Fang-qing. Experimental Research on Dynamic Characteristics and Coupled Vibration of a Maglev Train System[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 149-152.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-092024-102024-112024-122025-012025-022025-032025-032025-042025-052025-062025-070102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.6 %FULLTEXT: 26.6 %META: 63.5 %META: 63.5 %PDF: 9.8 %PDF: 9.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.1 %其他: 13.1 %其他: 0.7 %其他: 0.7 %Central District: 0.1 %Central District: 0.1 %Falkenstein: 0.2 %Falkenstein: 0.2 %Rochester: 0.1 %Rochester: 0.1 %Seattle: 0.1 %Seattle: 0.1 %上海: 0.4 %上海: 0.4 %东京: 0.2 %东京: 0.2 %东莞: 0.1 %东莞: 0.1 %克拉科夫: 0.2 %克拉科夫: 0.2 %北京: 11.8 %北京: 11.8 %十堰: 0.7 %十堰: 0.7 %南京: 2.9 %南京: 2.9 %南昌: 1.2 %南昌: 1.2 %南通: 0.2 %南通: 0.2 %南阳: 0.2 %南阳: 0.2 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.4 %哥伦布: 0.4 %唐山: 0.1 %唐山: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大庆: 0.1 %大庆: 0.1 %天津: 0.8 %天津: 0.8 %宜宾: 0.1 %宜宾: 0.1 %宣城: 1.2 %宣城: 1.2 %山景城: 0.6 %山景城: 0.6 %常州: 0.6 %常州: 0.6 %张家口: 5.4 %张家口: 5.4 %德罕: 0.5 %德罕: 0.5 %德阳: 0.1 %德阳: 0.1 %成都: 1.1 %成都: 1.1 %扬州: 1.6 %扬州: 1.6 %斯劳: 0.1 %斯劳: 0.1 %新乡: 0.1 %新乡: 0.1 %新庭: 0.1 %新庭: 0.1 %曼谷: 0.1 %曼谷: 0.1 %杭州: 0.4 %杭州: 0.4 %松原: 0.1 %松原: 0.1 %株洲: 0.1 %株洲: 0.1 %武汉: 2.2 %武汉: 2.2 %池州: 0.9 %池州: 0.9 %沈阳: 0.2 %沈阳: 0.2 %泉州: 0.2 %泉州: 0.2 %法兰克福: 0.2 %法兰克福: 0.2 %淄博: 0.5 %淄博: 0.5 %深圳: 0.1 %深圳: 0.1 %温州: 0.5 %温州: 0.5 %漯河: 3.2 %漯河: 3.2 %焦作: 0.2 %焦作: 0.2 %石家庄: 3.5 %石家庄: 3.5 %秦皇岛: 0.2 %秦皇岛: 0.2 %纽约: 0.1 %纽约: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 19.7 %芒廷维尤: 19.7 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %苏拉卡尔塔: 0.2 %苏拉卡尔塔: 0.2 %菏泽: 0.2 %菏泽: 0.2 %衡阳: 0.2 %衡阳: 0.2 %西宁: 13.4 %西宁: 13.4 %西安: 0.4 %西安: 0.4 %西雅图: 0.1 %西雅图: 0.1 %诺沃克: 1.9 %诺沃克: 1.9 %贵阳: 0.1 %贵阳: 0.1 %赣州: 1.1 %赣州: 1.1 %运城: 0.5 %运城: 0.5 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.1 %郑州: 1.1 %重庆: 0.4 %重庆: 0.4 %铜陵: 0.1 %铜陵: 0.1 %长春: 0.2 %长春: 0.2 %长沙: 1.2 %长沙: 1.2 %青岛: 0.1 %青岛: 0.1 %其他其他Central DistrictFalkensteinRochesterSeattle上海东京东莞克拉科夫北京十堰南京南昌南通南阳哈尔滨哥伦布唐山嘉兴大庆天津宜宾宣城山景城常州张家口德罕德阳成都扬州斯劳新乡新庭曼谷杭州松原株洲武汉池州沈阳泉州法兰克福淄博深圳温州漯河焦作石家庄秦皇岛纽约绵阳芒廷维尤芝加哥苏州苏拉卡尔塔菏泽衡阳西宁西安西雅图诺沃克贵阳赣州运城遵义邯郸郑州重庆铜陵长春长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article views(541) PDF downloads(84) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return