• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 29 Issue 4
Jul.  2016
Turn off MathJax
Article Contents
ZHOU Dajin, CUI Chenyu, MA Jiaqing, ZHAO Lifeng, ZHANG Yong, ZHAO Yong. Starting Characteristics of Linear Motor in Evacuated Tube HTS Side-Suspended Maglev System[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 750-758. doi: 10.3969/j.issn.0258-2724.2016.04.021
Citation: ZHOU Dajin, CUI Chenyu, MA Jiaqing, ZHAO Lifeng, ZHANG Yong, ZHAO Yong. Starting Characteristics of Linear Motor in Evacuated Tube HTS Side-Suspended Maglev System[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 750-758. doi: 10.3969/j.issn.0258-2724.2016.04.021

Starting Characteristics of Linear Motor in Evacuated Tube HTS Side-Suspended Maglev System

doi: 10.3969/j.issn.0258-2724.2016.04.021
  • Received Date: 29 Jun 2015
  • Publish Date: 25 Aug 2016
  • In order to gain a greater starting thrust and higher running acceleration in evacuated tube HTS (high temperature superconductor) side-suspended maglev vehicle, and improve running stability at high speeds, a 2D simulation model for linear motor was established by studying the driving system of evacuated-tube HTS side-suspended maglev. The characteristics of the starting-thrust and normal force of the motor with different secondary plates were studied by finite element simulation and experiments. The results show that the secondary plates of different materials and thicknesses have significantly effects on the operation of maglev vehicle. When a 2 mm-thick commercial-purity aluminum plate was used as the motor secondary, the maglev vehicle could achieve higher starting thrust and accelerating performance with a high synchronous-speed. Meanwhile, low density of aluminum plate reduces the total weight of the maglev vehicle and it provides a levitation force in the hanging direction, which increases the running stability of the maglev vehicle.

     

  • loading
  • ZHANG Y P, OSTER D, KUMADA M, et al. Key vacuum technologies to be solved in evacuated tube transportation[J]. Journal of Modern Transportation, 2011, 19(2):110-113.
    OSTER D, KUMADA M, ZHANG Y P. Evacuated tubetransport technologies (ET3)tm:a maximum value global transportation network for passengers and cargo[J]. Journal of Modern Transportation, 2011, 19(3):42-50.
    刘本林,赵勇. 速车系统概论[M]. 成都:西南交通大学出版社,2009:14-15.
    WANG J S, WANG S Y, ZENG Y W, et al. The first man-loading high temperature superconducting maglev test vehicle in the world[J]. Physica C:Superconductivity, 2002, 378/379/380/381:809-814.
    SOTELO G G, DE OLIVEIRA R A H, COSTA F S, et al. A full scale superconducting magnetic levitation (maglev) vehicle operational line[J]. IEEE Transactions on Applied Superconductivity, 2015, 25(3):3601005.
    D'OVIDIO G, CARPENITO A. Dynamic analysis of high-temperature superconducting vehicle suspension[J]. Journal of Superconductivity and Novel Magnetism, 2015, 28:591-595.
    OZTURK K, ABDIOGLU M, SAHIN E, et al. The effect of magnetic field distribution and pole array on the vertical levitation force properties of hts maglev systems[J]. IEEE Transactions on Applied Superconductivity, 2015, 25(4):3601607.
    LIU L, WANG J S, WANG S Y, et al. Levitation force transition of high-tc superconducting bulks within a maglev vehicle system under different dynamic operation[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3):1547-1550.
    DA COSTA BRANCO P J, DENTE J A. Design and experiment of a new maglev design using zero-field-cooled YBCO superconductors[J]. IEEE Transactions on Industrial Electronics, 2012, 59(11):4120-4127.
    JIANG J, BAI X, WU L, et al. Design consideration of a super-high speed high temperature superconductor maglev evacuated tube transport (Ⅰ)[J]. Journal of Modern Transportation, 2012, 20(2):108-114.
    陈绪勇,赵立峰,马家庆,等. 真空管道磁浮列车救援动力学仿真分析[J]. 真空科学与技术学报,2013,33(11):1100-1104.CHEN Xuyong, ZHAO Lifeng, MA Jiaqing, et al. Dynamics simulation of rescuing of magnetic-levitation train running in evacuated tube[J]. Chinese Journal of Vacuum Science and Technology, 2013, 33(11):1100-1104.
    马家庆,周大进,赵立峰,等. 真空管道中高温超导磁悬浮车运行时的振动能耗特性[J]. 真空科学与技术学报,2014,34(2):119-125.MA Jiaqing, ZHOU Dajin, ZHAO Lifeng, et al. The energy loss of running high-temperature superconducting maglev train for the vibration in evacuated tube[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(2):119-125.
    马家庆,周大进,赵立峰,等. 真空管道HTS磁浮系统中振动耗能法电磁制动分析[J]. 真空科学与技术学报,2015,35(2):130-136.MA Jiaqing, ZHOU Dajin, ZHAO Lifeng, et al. Electromagnetic braking of high temperature superconducting maglev traveling in evacuated tube transport[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(2):130-136.
    ZHANG Y P. Numerical simulation and analysis of aerodynamic drag on a subsonic train in evacuated tube transportation[J]. Journal of Modern Transportation, 2012, 20(1):44-48.
    CHEN X Y, ZHAO L F, MA J Q, et al. Aerodynamic simulation of evacuated tube maglev trains with different streamlined designs[J]. Journal of Modern Transportation, 2012, 20(2):115-120.
    米百刚,詹浩,朱军. 基于动网格的真空管道高速列车阻力计算方法研究[J]. 真空科学与技术学报,2013,33(9):877-882.MI Baigang, ZHAN Hao, ZHU Jun. Simulation of aerodynamic drag of high-speed train in evacuated tube transportation[J]. Chinese Journal of Vacuum Science and Technology, 2013, 33(9):877-882.
    刘加利,张继业,张卫华. 真空管道高速列车气动阻力及系统参数设计[J]. 真空科学与技术学报,2014,34(1):10-15.LIU Jiali, ZHANG Jiye, ZHANG Weihua. Impacts of pressure, blockage-ratio and speed on aerodynamic drag-force of high-speed trains[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(1):10-15.
    周大进,马家庆,赵立峰,等. 真空管道HTS磁浮列车实验系统环形加速器设计[J]. 真空科学与技术学报,2015,35(4):391-398.ZHOU Dajin, MA Jiaqing, ZHAO Lifeng, et al. Design of ring-shaped accelerator for high-temperature superconducting maglev trains moving in evacuated tube[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(4):391-398.
    LIANG G, ZHAO L F, YANG J L, et al. Study of the maglev performance of the side-mounted high-temperature superconductor maglev rotating system[J]. IEEE Transactions on Applied Superconductivity, 2015, 25(4):3601406.
    许金,马伟明,鲁军勇,等. 分段供电直线感应电机气隙磁场分布和互感不对称分析[J]. 中国电机工程学报,2011,31(15):61-68.XU Jin, MA Weiming, LU Junyong, et al. Analysis of air-gap magnetic field distribution and mutual inductance asymmetry of sectionally powered linear induction motor[J]. Proceedings of the CSEE, 2011, 31(15):61-68.
    刘斌,方进,曹君慈,等. 次级结构参数对高温超导直线感应电机电磁特性的影响[J]. 低温与超导,2014,42(5):46-50.LIU Bin, FANG Jin, CAO Junci, et al. Effect of secondary structural parameters on HTS LIM electromagnetic properties[J]. Cryogenics Superconductivity, 2014, 42(5):46-50.
    彭威,李伟力,程树康,等. 次级对直线感应电动机性能的影响[J]. 电机与控制学报, 2008,12(1):47-51.PENG Wei, LI Weili, CHENG Shukang, et al. Influence of secondary on linear induction motor performance[J]. Electric Machines and Control, 2008, 12(1):47-51.
    孙兆龙,马伟明,鲁军勇,等. 长初级双边直线感应电动机静态纵向边端效应及阻抗矩阵研究[J]. 中国电机工程学报,2010,30(18):72-77.SUN Zhaolong, MA Weiming, LU Junyong, et al. Research of static longitudinal end effect and impedance matrix for long primary double-sided linear induction motors[J]. Proceedings of the CSEE, 2010, 30(18):72-77.
    杨通. 高速大推力直线感应电机的电磁理论与设计研究[D]. 武汉:华中科技大学,2010.
    叶云岳. 直线电机原理与应用[M]. 北京:机械工业出版社,2000:46-48,90,76-78.
    陈红艳. 直线感应电机电磁特性数值计算与仿真设计[D]. 成都:西南交通大学,2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(477) PDF downloads(226) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return