• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 60 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
XU Fengqiu, QIU Yi, HE Jiawen, XU Xianze. Remanence Compensation of Maglev Planar Motor Based on Digital Twin Model[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 1050-1059. doi: 10.3969/j.issn.0258-2724.20240556
Citation: XU Fengqiu, QIU Yi, HE Jiawen, XU Xianze. Remanence Compensation of Maglev Planar Motor Based on Digital Twin Model[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 1050-1059. doi: 10.3969/j.issn.0258-2724.20240556

Remanence Compensation of Maglev Planar Motor Based on Digital Twin Model

doi: 10.3969/j.issn.0258-2724.20240556
  • Received Date: 30 Oct 2024
  • Rev Recd Date: 28 Feb 2025
  • Available Online: 20 May 2025
  • Publish Date: 03 Apr 2025
  • A remanence compensation method for permanent magnet arrays was proposed to enhance the control performance of maglev planar motors after demagnetization faults, and the effectiveness of the proposed method was verified by a digital twin model. Firstly, a digital twin framework for maglev planar motors based on a five-dimensional digital twin model was constructed, and the components of the five-layer architecture were clarified. Secondly, the relationship between the magnetic field around the mover and the residual magnetization intensity was explored by using a magnetic charge node model to obtain a remanence inversion expression. Then, the inverted remanence data were introduced into the motion decoupling process to derive the control current after remanence compensation. Digital twin data of maglev planar motors with different demagnetization distributions were used to obtain remanence values through inversion. Multiple trajectory tracking simulation experiments were conducted to compare motion simulations under three conditions: no demagnetization, neglecting demagnetization effects, and remanence inversion compensation. The results show that compared with neglecting demagnetization effects, the remanence inversion compensation method reduces the root mean square error of horizontal ramp trajectory tracking by 56.5% and the maximum error by 40.9%. The setting time in planar motion step response is decreased by 41.3%, and the overshoot is reduced by 15.7%. When a circle contour is tracked, the root mean square of contour error is decreased by 85.0%, and the maximum error is reduced by 38.9%.

     

  • loading
  • [1]
    郭东明. 高性能制造[J]. 机械工程学报,2022,58(21): 225-242. doi: 10.3901/JME.2022.21.225

    GUO Dongming. High performance manufacturing[J]. Journal of Mechanical Engineering, 2022, 58(21): 225-242. doi: 10.3901/JME.2022.21.225
    [2]
    ZHOU L, WU J J. Magnetic levitation technology for precision motion systems: a review and future perspectives[J]. International Journal of Automation Technology, 2022, 16(4): 386-402. doi: 10.20965/ijat.2022.p0386
    [3]
    FU H, HU C X, YU D D, et al. Cascaded iterative learning motion control of precision maglev planar motor with experimental investigation[J]. ISA Transactions, 2023, 139: 463-474. doi: 10.1016/j.isatra.2023.03.031
    [4]
    FAIZ J, NEJADI-KOTI H. Demagnetization fault indexes in permanent magnet synchronous motors: an overview[J]. IEEE Transactions on Magnetics, 2016, 52(4): 1-11.
    [5]
    NAIR S S, PATEL V I, WANG J B. Post-demagnetization performance assessment for interior permanent magnet AC machines[J]. IEEE Transactions on Magnetics, 2016, 52(4): 1-10.
    [6]
    WOO D K, JEONG B H. Irreversible demagnetization of permanent magnet in a surface-mounted permanent magnet motor with overhang structure[J]. IEEE Transactions on Magnetics, 2016, 52(4): 1-6.
    [7]
    JANSEN J W, VAN LIEROP C M M, LOMONOVA E A, et al. Modeling of magnetically levitated planar actuators with moving magnets[J]. IEEE Transactions on Magnetics, 2007, 43(1): 15-25.
    [8]
    HUANG S D, LIN Z X, CAO G Z, et al. Nonlinear dynamic model-based position control parameter optimization method of planar switched reluctance motors[J]. Mathematics, 2023, 11(19): 4067.1-4067.19.
    [9]
    周扬,周瑾,王艺宇,等. 考虑界面接触的磁悬浮轴承-转子系统建模及鲁棒控制[J]. 西南交通大学学报,2024,59(4): 755-765.

    ZHOU Yang, ZHOU Jin, WANG Yiyu, et al. Modeling and robust control of magnetic bearing-rotor system considering interface contact[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 755-765.
    [10]
    HUANG S D, XU Z H, CAO G Z, et al. Nonlinear-disturbance-observer-based predictive control for trajectory tracking of planar motors[J]. IET Electric Power Applications, 2024, 18(4): 389-399. doi: 10.1049/elp2.12398
    [11]
    PARK Y, FERNANDEZ D, LEE S B, et al. Online detection of rotor eccentricity and demagnetization faults in PMSMs based on Hall-effect field sensor measurements[J]. IEEE Transactions on Industry Applications, 2019, 55(3): 2499-2509.
    [12]
    BRAUN J, DOPPELBAUER M, BRAUN J, et al. Calculation of the demagnetization for permanent magnet synchronous machines[C]//2016 XXII International Conference on Electrical Machines (ICEM). Lausanne: ACM, 2016: 173-179.
    [13]
    HUANG L, ZHOU F L, WANG W, et al. Digital twin method and application practice of spacecraft system driven by mechanism data[J]. Digital Twin, 2024, 4: 1-16. doi: 10.12688/digitaltwin.17918.1
    [14]
    丁国富,何旭,张海柱,等. 数字孪生在高速列车生命周期中的应用与挑战[J]. 西南交通大学学报,2023,58(1): 58-73. doi: 10.3969/j.issn.0258-2724.20210573

    DING Guofu, HE Xu, ZHANG Haizhu, et al. Application and challenges of digital twin in life cycle of high-speed trains[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 58-73. doi: 10.3969/j.issn.0258-2724.20210573
    [15]
    TUEGEL E J, INGRAFFEA A R, EASON T G, et al. Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering, 2011, 2011: 154798.1-154798.14.
    [16]
    陶飞,程颖,程江峰,等. 数字孪生车间信息物理融合理论与技术[J]. 计算机集成制造系统,2017,23(8): 1603-1611.

    TAO Fei, CHENG Ying, CHENG Jiangfeng, et al. Theories and technologies for cyber-physical fusion in digital twin shop-floor[J]. Computer Integrated Manufacturing Systems, 2017, 23(8): 1603-1611.
    [17]
    KOHTZ S, ZHAO J H, RENTERIA A, et al. Optimal sensor placement for permanent magnet synchronous motor condition monitoring using a digital twin-assisted fault diagnosis approach[J]. Reliability Engineering & System Safety, 2024, 242: 109714.1-109714.12.
    [18]
    陶飞,刘蔚然,刘检华,等. 数字孪生及其应用探索[J]. 计算机集成制造系统,2018,24(1): 1-18.

    TAO Fei, LIU Weiran, LIU Jianhua, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18.
    [19]
    BANCEL F. Magnetic nodes[J]. Journal of Physics D: Applied Physics, 1999, 32(17): 2155-2161. doi: 10.1088/0022-3727/32/17/304
    [20]
    MAHMOUDITABAR F, VAHEDI A, MARIGNETTI F. The demagnetization phenomenon in PM machines: principles, modeling, and design considerations[J]. IEEE Access, 2023, 11: 47750-47773. doi: 10.1109/ACCESS.2023.3274701
    [21]
    LI W L, ZHANG M W, ZHAO X, et al. Effect of demagnetization fault on electromagnetic field and related parameters in permanent magnet wind generator[C]//2019 22nd International Conference on Electrical Machines and Systems (ICEMS). Harbin: ACM, 2019: 1-7.
    [22]
    CHOI G, JAHNS T M. Investigation of key factors influencing the response of permanent magnet synchronous machines to three-phase symmetrical short-circuit faults[J]. IEEE Transactions on Energy Conversion, 2019, 31(4): 1488-1497.
    [23]
    ZHAN H L, WU L J, LYU Z K, et al. Uneven demagnetization fault diagnosis in dual three-phase permanent magnet machines based on electrical signal difference[J]. IEEE Transactions on Transportation Electrification, 2023, 9(2): 3026-3039.
    [24]
    XU F Q, PENG R T, ZHENG T, et al. Development and validation of numerical magnetic force and torque model for magnetically levitated actuator[J]. IEEE Transactions on Magnetics, 2022, 55(1): 1-9.
    [25]
    XU F Q, SHI Y, ZHANG K Y, et al. Real-time application of robust offset-free MPC in maglev planar machine[J]. IEEE Transactions on Industrial Electronics, 2023, 70(6): 6121-6130.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(7)

    Article views(284) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return