• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
HE Songyang, YAN Xiuqing, LI Zhengliang, LIU Xiangyun, LI Zhong, GONG Tao. Theoretical Study on Uplift Calculation of Embedded Twelve Ground Screws of Transmission Angle Steel Tower[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1406-1414. doi: 10.3969/j.issn.0258-2724.20230011
Citation: ZHOU Jingxuan, BAO Weidong, WANG Ji, ZHANG Dayu. Multi-Task Federated Learning for Unmanned Aerial Vehicle Swarms Based on Encoder-Decoder Architecture[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 933-941. doi: 10.3969/j.issn.0258-2724.20230539

Multi-Task Federated Learning for Unmanned Aerial Vehicle Swarms Based on Encoder-Decoder Architecture

doi: 10.3969/j.issn.0258-2724.20230539
  • Received Date: 15 Oct 2023
  • Rev Recd Date: 10 Apr 2024
  • Available Online: 29 May 2024
  • Publish Date: 17 Apr 2024
  • Traditional federated learning has limitations in unmanned aerial vehicle (UAV) swarm applications, which require all participants to perform the same tasks and have the same model structure. Therefore, a multi-task federated learning (M-Fed) method suitable for UAV swarms was explored, and an innovative encoder-decoder architecture was designed to enhance knowledge sharing among UAVs performing different tasks. Firstly, a direct knowledge-sharing mechanism was established for UAVs performing the same tasks, enabling effective knowledge fusion of the same tasks through direct aggregation. Secondly, for UAVs performing different tasks, the encoder parts were extracted from the encoder-decoder architectures of all UAVs to construct a global encoder. Finally, during the training process, the information from both the local encoder and the global encoder was integrated into the loss function. Iterative updates were then performed to gradually align the local decoder with the global decoder, achieving efficient cross-task knowledge sharing. Experimental results demonstrate that compared to traditional methods, the proposed method improves the performance of UAV swarms by 1.79%, 0.37%, and 2.78% on three single tasks, respectively. Although there is a slight decrease of 0.38% in performance on one task, the overall performance is still significantly increased by 2.38%.

     

  • [1]
    王志红,程尚. 无人驾驶场景多任务感知算法研究[J]. 武汉理工大学学报,2023,45(8): 140-146. doi: 10.3963/j.issn.1671-4431.2023.08.021

    WANG Zhihong, CHENG Shang. Research on multitask perception algorithms for unmanned driving scenarios[J]. Journal of Wuhan University of Technology, 2023, 45(8): 140-146. doi: 10.3963/j.issn.1671-4431.2023.08.021
    [2]
    杜家豪,秦娜,贾鑫明,等. 基于联邦学习的多线路高速列车转向架故障诊断[J]. 西南交通大学学报,2024,59(1): 185-192.

    DU Jiahao, QIN Na, JIA Xinming, et al. Fault diagnosis of multiple railway high speed train bogies based on federated learning[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 185-192.
    [3]
    姚献财,郑建超,郑鑫,等. 面向联邦学习的无人机轨迹与资源联合优化[J/OL]. 计算机工程与应用,2024:1-12 [2024-04-28]. http://kns.cnki.net/kcms/detail/11.2127.TP.20230 509.1840.007.html.
    [4]
    SHEN Y, QU Y B, DONG C, et al. Joint training and resource allocation optimization for federated learning in UAV swarm[J]. IEEE Internet of Things Journal, 2023, 10(3): 2272-2284. doi: 10.1109/JIOT.2022.3152829
    [5]
    MO X P, XU J. Energy-efficient federated edge learning with joint communication and computation design[J]. Journal of Communications and Information Networks, 2021, 6(2): 110-124. doi: 10.23919/JCIN.2021.9475121
    [6]
    PHAM Q V, LE M, HUYNH-THE T, et al. Energy-efficient federated learning over UAV-enabled wireless powered communications[J]. IEEE Transactions on Vehicular Technology, 2022, 71(5): 4977-4990. doi: 10.1109/TVT.2022.3150004
    [7]
    HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[J]. Computer Science, 2015, 14(7): 38-39.
    [8]
    XU D, OUYANG W L, WANG X G, et al. PAD-net: multi-tasks guided prediction-and-distillation network for simultaneous depth estimation and scene parsing[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 675-684.
    [9]
    CHEN J H, ZHOU J Y, YE J P. Integrating low-rank and group-sparse structures for robust multi-task learning[C]//Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. San Diego: ACM, 2011: 42-50.
    [10]
    ARGYRIOU A, EVGENIOU T, PONTIL M. Multi-task feature learning [C]//Conference on Advances in Neural Information Processing Systems. [S.l.]: MIT Press, 2007: 41-48.
    [11]
    EVGENIOU T, PONTIL M. Regularized multi: task learning[C]//Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Seattle: ACM, 2004: 109-117.
    [12]
    KIM S, XING E P. Statistical estimation of correlated genome associations to a quantitative trait network[J]. PLoS Genetics, 2009, 5(8): e1000587.1-e1000587.18.
    [13]
    JACOB L, BACH F, VERT J P. Clustered multi-task learning: a convex formulation[C]//Proceedings of the 21st International Conference on Neural Information Processing Systems. New York: Springer-Verlag, 2008: 745-752.
    [14]
    ZHANG Y, YEUNG D Y. A convex formulation for learning task relationships in multi-task learning[C]// Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence. [S.l.]: AUAI Press, 2010: 733-742.
    [15]
    GONALVES A R, VON ZUBEN F J, BANERJEE A. Multi-task sparse structure learning with gaussian copula models[J]. The Journal of Machine Learning Research, 2016, 17(1): 1205-1234.
    [16]
    ZHOU F, SHUI C J, ABBASI M, et al. Task similarity estimation through adversarial multitask neural network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(2): 466-480. doi: 10.1109/TNNLS.2020.3028022
    [17]
    KOKKINOS I. UberNet: training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 5454-5463.
    [18]
    赵佳琦,张迪,周勇,等. 基于深度强化学习的遥感图像可解释目标检测方法[J]. 模式识别与人工智能,2021,34(9): 777-786.

    ZHAO Jiaqi, ZHANG Di, ZHOU Yong, et al. Interpretable object detection method for remote sensing image based on deep reinforcement learning[J]. Pattern Recognition and Artificial Intelligence, 2021, 34(9): 777-786.
    [19]
    MARTIN D R, FOWLKES C C, MALIK J. Learning to detect natural image boundaries using local brightness, color, and texture cues[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 530-549. doi: 10.1109/TPAMI.2004.1273918
  • Relative Articles

    [1]YANG Meng, WANG Yunfei, ZHAO Jiabin, ZHOU Jing, WANG Yongjing, LI Yongle. Vortex-Induced Vibration Response of Bridges Considering Both Spanwise Variation of Vibration Amplitude and Correlation of Aerodynamic Forces[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 45-52. doi: 10.3969/j.issn.0258-2724.20220714
    [2]HUANG Lin, DONG Jiahui, LIAO Haili, PU Shiyu, WANG Qi. Vortex-Induced Vibration (VIV) Aerodynamic Measures of Girder with Side Beam Based on Computation Fluid Dynamics (CFD) and Wind Tunnel Test[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 343-352. doi: 10.3969/j.issn.0258-2724.20220208
    [3]LI Yongle, PAN Junzhi, TI Zilong, RAO Gang. Inversion Method of Vortex-Induced Vibration Amplitude for Long-Span Bridges with Partially Installed Noise Barrier[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 183-190. doi: 10.3969/j.issn.0258-2724.20210172
    [4]LEI Yongfu, LI Ming, SUN Yanguo, LI Mingshui. Experimental Study on Flutter Performance of Long-Span Suspension Bridge with Double-Deck Truss Girder[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1224-1232. doi: 10.3969/j.issn.0258-2724.20200599
    [5]LI Chunguang, MAO Yu, YAN Hubin, LIANG Aihong, HAN Yan. Experimental Study on Vortex-Induced Vibration Performance and Countermeasures for Side Girder Beam with Conveyer[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 886-893. doi: 10.3969/j.issn.0258-2724.20210224
    [6]JI Wei, SHAO Tianyan. Finite Element Model Updating of Box Girder Bridges with Corrugated Steel Webs[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 1-11. doi: 10.3969/j.issn.0258-2724.20191198
    [7]LIN Siyuan, LIAO Haili, WANG Qi, XIONG Long. Effects of Oscillation Amplitude on Nonlinear Motion-Induced Force for 5 ∶ 1 Rectangular Cylinder[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 249-259. doi: 10.3969/j.issn.0258-2724.20170573
    [8]LI Tian, QIN Deng, AN Chao, ZHANG Jiye. Effect of Computational Grid on Uncertainty in Train Aerodynamics[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 816-822. doi: 10.3969/j.issn.0258-2724.20180503
    [9]MA Cunming, WANG Junxin, LUO Nan, LI Hongjiu, LIAO Haili. Vortex-Induced Vibration Performance and Control Measures of Wide Twin-Box Girder[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 724-730. doi: 10.3969/j.issn.0258-2724.20161029
    [10]LI Ming, SUN Yanguo, LI Mingshui, WU Bo. Vortex-Induced Vibration Performance of Wide Streamlined Box Girder and Aerodynamic Countermeasure Research[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 712-719. doi: 10.3969/j.issn.0258-2724.2018.04.007
    [11]XIONG Long, LIAO Haili, WANG Qi, MA Cunming. Analytic Identification of Bridge Nonlinear Motion-Induced Aerodynamic Parameter[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 824-831. doi: 10.3969/j.issn.0258-2724.2016.05.002
    [12]LIU Jun, LIAO Haili, WAN Jiawei, MA Cunming. Effect of Guide Vane beside Maintenance Rail on Vortex-Induced Vibration of Streamlined Box Girder[J]. Journal of Southwest Jiaotong University, 2015, 28(5): 789-795. doi: 10.3969/j.issn.0258-2724.2015.05.004
    [13]LUO Gang, ZHOU Xiaojun. Vortex-Induced Fatigue Damage Analysis of Submerged Floating Tunnel Cable[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 642-648. doi: 10.3969/j.issn.0258-2724.2014.04.013
    [14]ZHANG Zhengwei, QUAN Yong, GU Ming, XIONG Yong. Aerodynamic Characteristics of Tapered Tall Buildings with Square Section[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 772-778. doi: 10.3969/j.issn.0258-2724.2014.05.005
    [15]QIN Hao, LIAO Haili, LI Mingshui. Vortex-Induced Vibration of Continuous Steel Box-Girder Bridge with Variable Cross-Sections at Typical Erection Stages[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 760-765,786. doi: 10.3969/j.issn.0258-2724.2014.05.003
    [16]WANG Qi, LIAO Haili, LI Mingshui, MA Cunming. Empirical Mathematical Model for Nonlinear Motion-Induced Aerodynamic Force of Bridge Girder[J]. Journal of Southwest Jiaotong University, 2013, 26(2): 271-277. doi: 10.3969/j.issn.0258-2724.2013.02.013
    [17]SUN Yanguo, LIAO Haili, LI Mingshui. Mitigation Measures of Vortex-Induced Vibration of Suspension Bridge Based on Section Model Test[J]. Journal of Southwest Jiaotong University, 2012, 25(2): 218-223. doi: 10.3969/j.issn.0258-2724.2012.02.008
    [18]XIAN Rong, LIAO Haili, LI Mingshui. Calculation of Spanwise Vortex-Induced Vibration Responses of Long-Span Bridge Girder[J]. Journal of Southwest Jiaotong University, 2008, 21(6): 740-746.
    [19]LUGui-chen, ZHANGHong-fen, YANG Yong-xi, GE Yao-jun. Cross Section Aerodynam ic Optim ization of SteelBox G irder in X ihoumen Suspension Bridge Prelim inary Design[J]. Journal of Southwest Jiaotong University, 2005, 18(4): 473-477.
    [20]LIU Shan-hong, HE Guang-han. Test Study on Segmental Model of a PPC Box Girder[J]. Journal of Southwest Jiaotong University, 2001, 14(5): 491-494.
  • Cited by

    Periodical cited type(3)

    1. 张艺,李欢,魏高翔,何旭辉,谢祖育. 高铁大跨扁平箱梁桥涡振性能及抑振措施研究. 中南大学学报(自然科学版). 2025(02): 560-574 .
    2. 段青松,马存明. 检修车轨道对窄幅流线型箱梁涡振性能影响研究. 桥梁建设. 2024(01): 88-94 .
    3. 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2024. 中国公路学报. 2024(12): 1-160 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100125
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 35.1 %FULLTEXT: 35.1 %META: 61.8 %META: 61.8 %PDF: 3.1 %PDF: 3.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.8 %其他: 11.8 %其他: 0.2 %其他: 0.2 %China: 0.1 %China: 0.1 %Seattle: 0.1 %Seattle: 0.1 %Taoyuan District: 0.2 %Taoyuan District: 0.2 %上海: 0.2 %上海: 0.2 %东京: 0.2 %东京: 0.2 %伊利诺伊州: 0.2 %伊利诺伊州: 0.2 %北京: 24.1 %北京: 24.1 %十堰: 1.1 %十堰: 1.1 %南京: 4.3 %南京: 4.3 %南通: 0.6 %南通: 0.6 %台州: 0.1 %台州: 0.1 %合肥: 0.1 %合肥: 0.1 %吕梁: 0.2 %吕梁: 0.2 %呼和浩特: 0.5 %呼和浩特: 0.5 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.1 %唐山: 0.1 %喀什: 0.2 %喀什: 0.2 %嘉兴: 0.4 %嘉兴: 0.4 %圣何塞: 0.1 %圣何塞: 0.1 %圣克拉拉: 0.1 %圣克拉拉: 0.1 %大庆: 0.1 %大庆: 0.1 %天津: 2.9 %天津: 2.9 %宣城: 1.1 %宣城: 1.1 %常州: 0.1 %常州: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.7 %广州: 0.7 %开罗: 0.2 %开罗: 0.2 %张家口: 1.5 %张家口: 1.5 %悉尼: 0.1 %悉尼: 0.1 %成都: 0.8 %成都: 0.8 %扬州: 2.9 %扬州: 2.9 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %杭州: 0.7 %杭州: 0.7 %桂林: 0.4 %桂林: 0.4 %武汉: 2.2 %武汉: 2.2 %池州: 1.3 %池州: 1.3 %沈阳: 0.4 %沈阳: 0.4 %洛阳: 0.1 %洛阳: 0.1 %深圳: 0.7 %深圳: 0.7 %温州: 0.5 %温州: 0.5 %湖州: 0.2 %湖州: 0.2 %漯河: 5.3 %漯河: 5.3 %漳州: 0.2 %漳州: 0.2 %石家庄: 0.8 %石家庄: 0.8 %纽约: 0.2 %纽约: 0.2 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 13.1 %芒廷维尤: 13.1 %芝加哥: 0.6 %芝加哥: 0.6 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.1 %衡阳: 0.1 %襄阳: 0.1 %襄阳: 0.1 %西宁: 7.9 %西宁: 7.9 %西安: 1.1 %西安: 1.1 %诺沃克: 1.8 %诺沃克: 1.8 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.2 %运城: 0.2 %邯郸: 0.8 %邯郸: 0.8 %郑州: 0.6 %郑州: 0.6 %重庆: 0.2 %重庆: 0.2 %金华: 0.5 %金华: 0.5 %铁岭: 0.2 %铁岭: 0.2 %长沙: 1.9 %长沙: 1.9 %阿坝: 0.2 %阿坝: 0.2 %青岛: 0.1 %青岛: 0.1 %香港: 0.8 %香港: 0.8 %其他其他ChinaSeattleTaoyuan District上海东京伊利诺伊州北京十堰南京南通台州合肥吕梁呼和浩特哈尔滨哥伦布唐山喀什嘉兴圣何塞圣克拉拉大庆天津宣城常州平顶山广州开罗张家口悉尼成都扬州无锡昆明杭州桂林武汉池州沈阳洛阳深圳温州湖州漯河漳州石家庄纽约舟山芒廷维尤芝加哥衡水衡阳襄阳西宁西安诺沃克贵阳运城邯郸郑州重庆金华铁岭长沙阿坝青岛香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(2)

    Article views(600) PDF downloads(150) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return