• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 27 Issue 5
Oct.  2014
Turn off MathJax
Article Contents
QIN Hao, LIAO Haili, LI Mingshui. Vortex-Induced Vibration of Continuous Steel Box-Girder Bridge with Variable Cross-Sections at Typical Erection Stages[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 760-765,786. doi: 10.3969/j.issn.0258-2724.2014.05.003
Citation: QIN Hao, LIAO Haili, LI Mingshui. Vortex-Induced Vibration of Continuous Steel Box-Girder Bridge with Variable Cross-Sections at Typical Erection Stages[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 760-765,786. doi: 10.3969/j.issn.0258-2724.2014.05.003

Vortex-Induced Vibration of Continuous Steel Box-Girder Bridge with Variable Cross-Sections at Typical Erection Stages

doi: 10.3969/j.issn.0258-2724.2014.05.003
  • Received Date: 09 May 2013
  • Publish Date: 25 Oct 2014
  • In order to investigate the vortex-induced vibration performances of a long-span continuous steel box-girder bridge during erection to propose effective mitigation measures, the erection of a six-span continuous variable cross-section steel box-girder bridge was regarded as an engineering example. Its vortex-induced vibration at typical erection stages was investigated through aeroelastic model wind tunnel tests with a geometric ratio of 1 to 45, and additional damping ratio was applied to mitigate vortex-induced vibration. The mechanism of the vortex-induced vibration was discussed based on the test phenomenon. The research results show that the bridge may suffer serious vortex-induced vibration after the 2nd span is completed, and the vortex-induced vibration will exceed the specification limit. If the damping ratio is up to 1.2%, vortex-induced vibration amplitude can meet the specification requirement, and if the damping ratio is up to 2.1%, the vortex-induced vibration will be suppressed effectively.

     

  • loading
  • SIMIU E, SCANLAN R H. Wind effects on structures: fundamentals and applications to design[M]. 3rd ed. New York: John Wiley & Sons Inc., 1996: 216-219.
    SCHEWE G, LARSEN A. Reynolds number effects in the flow around a bluff bridge deck cross section[J]. Journal of Wind Engineering and Industrial Aerody-namics, 1998, 74-76: 788-829.
    鲜荣,廖海黎,李明水. 大比例主梁节段模型涡激振动风洞试验分析[J]. 实验流体力学,2009,23(4): 15-20. XIAN Rong, LIAO Haili, LI Mingshui. Analysis of vortex-induced vibration of large-scale section model of girder in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(4): 15-20.
    YOZO F, YOSHITAKA Y. Wind induced vibration and control of Tans-Tokyo Bay crossing bridge[J]. Journal of Structural Engineering, 2002, 128(8): 1012-1025.
    STROUHAL V C. On a particular way of tone generation[J].Wiedmann's Annalen der Physik und Chemie, 1878(5): 216-251.
    SIMIU E, SCANLAN R H. 风对结构的作用:风工程导论[M]. 2版. 刘尚培,项海帆,谢霁明,译. 上海:同济大学出版社,1992: 189-194.
    LARSEN A. A generalized model for assessment of vortex-induced vibrations of flexible structures[J]. Journal of Wind Engineering and Industrial Aerody-namics, 1995, 57(2/3): 281-294.
    LEE S, LEE J S, KIM J D. Prediction of vortex-induced wind loading on long-span bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67/68: 267-278.
    EHSAN F, SCANLAN R H. Vortex-induced vibrations of flexible bridges[J]. Journal of Engineering Mechanics, 1990, 116(6): 1392-1410.
    朱乐东. 桥梁涡激共振试验节段模型质量系统模拟与振幅修正方法[J]. 工程力学,2005,22(5): 204-208. ZHU Ledong. Mass simulation and amplitude conversion of bridge sectional model test for vortex-excited resonance[J]. Engineering Mechanics, 2005, 22(5): 204-208.
    鲜荣,廖海黎,李明水. 大跨度桥梁主梁沿跨向涡激振动响应计算[J]. 西南交通大学学报,2008,43(6): 740-746. XIAN Rong, LIAO Haili, LI Mingshui. Calculation of spanwise vortex-induced vibration responses of long- span bridge girder[J]. Journal of Southwest Jiaotong University, 2008, 43(6): 740-746.
    李明水,孙延国,廖海黎. 基于涡激力偏相关的大跨度桥梁涡激振动线性分析方法[J]. 空气动力学学报,2012,30(5): 45-50. LI Mingshui, SUN Yanguo, LIAO Haili. A linear theory of vortex induced vibration for long span bridge based on partial correlation[J]. Acta Aerodynamic Sinica, 2012, 30(5): 45-50.
    项海帆. 现代桥梁抗风理论与实践[M]. 北京:人民交通出版社,2005: 117-119.
    张伟,魏志刚,杨永昕. 基于高低雷诺数试验的分离双箱涡振性能对比[J]. 同济大学学报:自然科学版,2008,36(1): 7-11. ZHANG Wei, WEI Zhigang, YANG Yongxin. Comparison and analysis of vortex induced vibration for twin-box bridge sections based on experiments in different Reynolds numbers[J]. Journal of Tongji University: Natural Science, 2008, 36(1): 7-11.
    孙延国,廖海黎,李明水. 基于节段模型试验的悬索桥涡振抑振措施[J]. 西南交通大学学报,2012,47(2): 218-223. SUN Yanguo, LIAO Haili, LI Mingshui. Mitigation measures of vortex-induced vibration of suspension bridge based on section model test[J]. Journal of Southwest Jiaotong University, 2012, 47(2): 218-223.
    中交公路规划设计院. JTG/YD60-01—2004 公路桥梁抗风设计规范[S]. 北京:人民交通出版社,2004.
    陈政清. 桥梁风工程[M]. 北京:人民交通出版社,2005: 175-181.
    李江刚. 大跨度连续钢箱梁涡激振动及振动控制研究. 成都:西南交通大学土木工程学院,2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1072) PDF downloads(547) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return