• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
SUN Shulei, LI Fu, HUANG Yunhua, DING Junjun. Numerical Simulation of Railway Vehicle Impacts[J]. Journal of Southwest Jiaotong University, 2013, 26(3): 507-512. doi: 10.3969/j.issn.0258-2724.2013.03.018
Citation: XIONG Long, LIAO Haili, WANG Qi, MA Cunming. Analytic Identification of Bridge Nonlinear Motion-Induced Aerodynamic Parameter[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 824-831. doi: 10.3969/j.issn.0258-2724.2016.05.002

Analytic Identification of Bridge Nonlinear Motion-Induced Aerodynamic Parameter

doi: 10.3969/j.issn.0258-2724.2016.05.002
  • Received Date: 29 Jul 2015
  • Publish Date: 25 Oct 2016
  • As nonlinearity component of motion-induced force plays a key role in wind-induced vibration of bridge, it is very important to reasonably determine the nonlinear aerodynamic parameters. According to the detached-forced vibration wind tunnel tests, an analytic identification method for nonlinear aerodynamic parameters, which combines the eigensystem realization algorithm and nonlinear least square, was proposed with consideration of the analytical expression of nonlinear self-excited force. Numerical simulation results of ideal flat plate show that the identification results are in good agreement with the theoretical values in the noise-free case, and the maximum identification error is only 3.7% when there is additional 20% Gaussian noise. It means that the proposed analytic method has strong anti-noise ability. In addition, the numerical simulation results of nonlinear aerodynamic force show that the analytic method can accurately estimate the order of nonlinear motion-induced aerodynamic force, and with additional 20% Gaussian noise, the maximum identification error of the phase and amplitude of each harmonic is only 3.2%. Finally, wind tunnel tests were carried out to verify the feasibility and effectiveness of proposed method.

     

  • SCANLAN R H, TOMKO J. Airfoil and bridge deck flutter derivatives[J]. Journal of Engineering Mechanics, ASCE, 1971, 97(6): 1717-1737.
    HALFMAN R L. Experimental aerodynamic derivatives of a sinusoidally oscillationg airfoil in two-dimensionalflow [R]. USA: National Advisory Committee for Aeronautics, 1948.
    FALCO M, GURAMI A, ZASSO A. Nonlinear effects in sectional model aeroelastic parameters identification [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 42(1/3): 1321-1332.
    陈政清,于向东. 大跨桥梁颤振自激力的强迫振动法研究[J]. 土木工程学报,2002,35(5): 34-41. CHEN Zhengqing, YU Xiangdong. A new method for measuring flutter self-excited forces of long-span bridges[J]. China Civil Engineering Journal, 2002, 35(5): 34-41.
    LIAO H L, WANG Q, Li M S, et al. Aerodynamic hysteresis effects of thin airfoil and streamline box girder under large amplitude oscillation [C]//Proceedings of the 13th International Conference on Wind Engineering (ICWE 2011). Amsterdam: Multi-science Publishing Co. Ltd., 2011: 539-540.
    DIANA G, BRUNI S, ROCCHI D. A numerical and experimental investigation on aerodynamic non-linearities in bridge response to turbulent wind [C]//Proceedings of the 4th European African Conference on Wind Engineering (EACWE 2005). Prague: the Academy of Science of the Czech Republic, 2005: 84-85.
    DIANA G, RESTA F, ROCCHI D. A new approach to model the aeroelastic response of bridges in time domain by means of a rheological model [C]//Proceedings of the 12th International Conference on Wind Engineering (ICWE 2007). Cairns: The Australasian Wind Engineering Society, 2007: 207-214.
    XU X, Cao Z Y. New expressions of nonlinear aerodynamic forces in civil engineering[C]//Proceedings of the 3rd International Conference on Nonlinear Mechanics (ICNM 1998). Shanghai: Shanghai University Press, 1998: 396-401.
    DIANA G, RESTA F, ROCCHI D. A new numerical approach to reproduce bridge aerodynamic non-linearities in time domain[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10/11): 1871-1884.
    WU T, KAREEM A. Modeling hysteretic nonlinear behavior of bridge aerodynamics via cellular automata nested neural network[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(4): 378-388.
    王骑,廖海黎,李明水,等. 桥梁断面非线性自激气动力经验模型[J]. 西南交通大学学报,2013,48(2): 271-277. WANG Qi, LIAO Haili, LI mingshui, et al. Empirical mathematical model for nonlinear motion-Induced aerodynamic force of bridge girder[J]. Journal of Southwest Jiaotong University, 2013, 48(2): 271-277.
    喻胜,陈光矩. 一种检测噪声中正弦信号的SVD方法[J]. 电子学报,2000,28(6): 108-110. YU Sheng, CHEN Guangju. Detecting the sinusoidal signal in noise by the SVD method [J]. ACTA Electronica Sinica, 2000, 28(6): 108-110.
    李天云,袁明哲,郑波等. 谐波和间谐波三参数识别的SSI-LS方法[J]. 电力系统保护与控制,2011,39(10): 42-46. LI Tianyun, YUAN Mingzhe, ZHENG Bo, et al. A method of three parameters of harmonics and inter-harmonics high accuracy detection based on SSI-LS[J]. Power System Protection and Control, 2011, 39(10): 42-46.
    周帮友,胡绍全,杜强. 特征系统实现算法中的模型定阶方法研究[J]. 科学技术与工程,2009,9(10): 2715-2722. ZHOU Bangyou, HU Shaoquan, DU Qiang. Study about calculating the order of model in eigensystem realization algorithm[J]. Science Technology and Engineering, 2009, 9(10): 2715-2722.
  • Relative Articles

    [1]JIANG Zhengrong, QIU Junming, SHI Kairong, SU Changwang. Nonlinear Buckling Analysis of Suspended Domes Considering Initial Curvature of Members[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230234
    [2]LI Xi, YANG Hao. Research Progress on Buckling of Longitudinal Reinforcement Under Earthquake[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1043-1057. doi: 10.3969/j.issn.0258-2724.20220549
    [3]CHEN Yonghui, HAN Dandan, KONG Gangqiang, CHEN Long, CHEN Geng. Effect of Artificial Crust Layer on Pile-Soil Stress Ratio of Pipe Pile Composite Foundation[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 985-992. doi: 10.3969/j.issn.0258-2724.20210612
    [4]SHEN Caihua, YU Hansen, JIANG Xinyu, TANG Kai, LI Jingwen. Dynamic Coordination Coefficient Method for Critical Buckling Load of Stiffened U-Shaped Steel Sheet Pile[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 555-562. doi: 10.3969/j.issn.0258-2724.20220508
    [5]SHAO Guoxia, SU Qian, CHEN Shangyong, BAI Hao, WANG Wubin. Experimental Research on Deformation Characteristics of Piled Raft Foundation under Flexible Load[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 30-37. doi: 10.3969/j.issn.0258-2724.2017.01.005
    [6]PAN Yi, GENG Pengfei, GUO Yangzhao, YI Luxing. Analysis of Damping Effect in Two-Stage Energy Dissipation Damping System of Buckling Restrained Braces[J]. Journal of Southwest Jiaotong University, 2015, 28(5): 858-865. doi: 10.3969/j.issn.0258-2724.2015.05.014
    [7]ZUO Shen, LIU Weizheng, ZHANG Ruikun, ZHANG Hao, ZHANG Junhui. Bearing Behaviour of Composite Foundation with Rigid-Flexible and Long-Short Piles under Embankment Load[J]. Journal of Southwest Jiaotong University, 2014, 27(3): 379-385. doi: 10.3969/j.issn.0258-2724.2014.03.002
    [8]DONG Tianwen, ZHENG Yingren, TANG Xiaosong. Cusp Point Condition for Estimating Ultimate Load of Pile Foundation Based on Strength Reduction Method[J]. Journal of Southwest Jiaotong University, 2014, 27(3): 373-378. doi: 10.3969/j.issn.0258-2724.2014.03.001
    [9]GUO Liqun, WANG Lei, CHEN Fuquan. Soil Plugging Effect of Sleeves Driven by High Frequency Hammers[J]. Journal of Southwest Jiaotong University, 2013, 26(1): 47-54. doi: 10.3969/j.issn.0258-2724.2013.01.008
    [10]ZHOU Ling-Yuan, LI Jiao, LI Tong-Mei. Improved Arc-Length Method for Solving Buckling Problem[J]. Journal of Southwest Jiaotong University, 2011, 24(6): 922-925. doi: 10.3969/j.issn.0258-2724.2011.06.005
    [11]ZHANG Liang, LUO Qiang, LIU Xiaoxiao, ZHANG Lixiang, LIN Kun, ZHANG Shengli. Cushion Effect Analysis of Pile-Net Composite Foundation Based on Field Tests[J]. Journal of Southwest Jiaotong University, 2010, 23(5): 787-793. doi: 10. 3969/ j. issn. 0258-2724.
    [12]LUO Qiang, ZHANG Minjing, ZHANG Liang, ZHANG Lixiang. Additional Stresses in High-Strength Pile Composite Foundation under Embankment Load[J]. Journal of Southwest Jiaotong University, 2010, 23(5): 780-786. doi: 10. 3969/ j. issn. 0258-2724.
    [13]ZHOU Lingyuan, LI Tongmei, LI Qiao. Co-Rotational Formulation-Based Analysis of Shell Buckling[J]. Journal of Southwest Jiaotong University, 2010, 23(6): 893-897. doi: 10.3969/j.issn.0258-2724.2010.06.012
    [14]HAO Shuying, YANG Xiuping, YAO Bin. Local Buckling of Extended End-Plate Connection in Fire[J]. Journal of Southwest Jiaotong University, 2008, 21(3): 330-334.
    [15]LOU Yi-hong, PENG Jun-sheng. Analysis of Pile-Subsoil Interaction with Sand-Box Model Test and Calculation[J]. Journal of Southwest Jiaotong University, 2003, 16(2): 164-168.
    [16]XIETao, YUANWen-zhong, ZHUMing. The Deformation Behavior of Super-Large Pile Group under Vertical Load[J]. Journal of Southwest Jiaotong University, 2002, 15(4): 377-381.
    [17]HU De-gui, LUO Shu-xue, ZHAO Shan-rui. Analysis of Pile Settlement in Layered Soil[J]. Journal of Southwest Jiaotong University, 2000, 13(5): 492-495.
    [18]WANSi-ming, ZHAO Shan-rui, HUANG Guang-sheng. Reliability Analysis of the Pile Shaft of Bridge Pile Foundation Structure System[J]. Journal of Southwest Jiaotong University, 2000, 13(4): 366-370.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.8 %FULLTEXT: 30.8 %META: 69.2 %META: 69.2 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.1 %其他: 3.1 %上海: 0.4 %上海: 0.4 %临汾: 0.9 %临汾: 0.9 %北京: 2.7 %北京: 2.7 %十堰: 0.9 %十堰: 0.9 %台州: 0.4 %台州: 0.4 %天津: 1.3 %天津: 1.3 %宣城: 0.4 %宣城: 0.4 %常州: 0.4 %常州: 0.4 %张家口: 3.6 %张家口: 3.6 %徐州: 0.4 %徐州: 0.4 %成都: 1.8 %成都: 1.8 %扬州: 0.4 %扬州: 0.4 %杭州: 1.8 %杭州: 1.8 %格兰特县: 0.4 %格兰特县: 0.4 %武汉: 0.9 %武汉: 0.9 %池州: 0.9 %池州: 0.9 %济南: 0.4 %济南: 0.4 %温州: 0.4 %温州: 0.4 %漯河: 2.2 %漯河: 2.2 %石家庄: 0.4 %石家庄: 0.4 %芒廷维尤: 11.2 %芒廷维尤: 11.2 %西宁: 61.2 %西宁: 61.2 %长沙: 2.2 %长沙: 2.2 %青岛: 0.9 %青岛: 0.9 %其他上海临汾北京十堰台州天津宣城常州张家口徐州成都扬州杭州格兰特县武汉池州济南温州漯河石家庄芒廷维尤西宁长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(631) PDF downloads(200) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return