• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 58 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
LI Yongle, PAN Junzhi, TI Zilong, RAO Gang. Inversion Method of Vortex-Induced Vibration Amplitude for Long-Span Bridges with Partially Installed Noise Barrier[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 183-190. doi: 10.3969/j.issn.0258-2724.20210172
Citation: LI Yongle, PAN Junzhi, TI Zilong, RAO Gang. Inversion Method of Vortex-Induced Vibration Amplitude for Long-Span Bridges with Partially Installed Noise Barrier[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 183-190. doi: 10.3969/j.issn.0258-2724.20210172

Inversion Method of Vortex-Induced Vibration Amplitude for Long-Span Bridges with Partially Installed Noise Barrier

doi: 10.3969/j.issn.0258-2724.20210172
  • Received Date: 16 Mar 2021
  • Rev Recd Date: 16 Nov 2021
  • Available Online: 02 Sep 2022
  • Publish Date: 18 Nov 2021
  • The sectional model test in wind tunnels is often used to measure the vortex-induced vibration (VIV) of long-span bridges. Since the sectional model test is based on two-dimensional theory, when the bridge has different aerodynamic configurations along the span due to the partial installation of noise barriers, it is difficult to measure the VIV response directly through the sectional model test. Based on the empirical linear VIV model, an assessment method of VIV between the sectional model and prototype bridge that considers the effects of multiple aerodynamic configurations is proposed. Firstly, the sectional model test is performed on the models with and without barriers respectively. Then, the prototype response of the noise barriers installed and not installed along the span is investigated by ANSYS harmonic analysis, and the corresponding amplitude of the vortex-induced force is obtained. Finally, according to the actual installation position of the noise barrier along the span, the vortex-induced force is imposed on the bridge and the prototype response with the partially installed noise barrier is obtained. In addition, based on the method in this paper, various noise barrier installation schemes are numerically simulated. The results indicate that fully enclosed noise barrier will significantly reduce the aerodynamic performance of the main girder and the overall VIV will be affected by partial installation of barrier to a large degree. The method in this paper can estimate the prototype response of multi-aerodynamic configurations bridges through the results of sectional model tests. The installation of the noise barrier should be arranged on the side span as far as possible under the conditions of noise reduction. If the arrangement length exceeds the position of the bridge tower, it should be shortened as much as possible to reduce the vortex-induced response.

     

  • loading
  • [1]
    苏洋. 公铁两用双层桥梁风屏障气动机理及优化研究[D]. 成都: 西南交通大学, 2017.
    [2]
    韩旭,彭栋,向活跃,等. 横风作用下高速铁路桥梁全封闭声屏障气动特性的风洞试验研究[J]. 铁道建筑,2019,59(7): 151-155. doi: 10.3969/j.issn.1003-1995.2019.07.35

    HAN Xu, PENG Dong, XIANG Huoyue, et al. Research on wind tunnel tests for aerodynamic characteristics of closed noise barriers on high speed railway bridges under crosswinds[J]. Railway Engineering, 2019, 59(7): 151-155. doi: 10.3969/j.issn.1003-1995.2019.07.35
    [3]
    孙延国,廖海黎,李明水. 基于节段模型试验的悬索桥涡振抑振措施[J]. 西南交通大学学报,2012,47(2): 218-223,264. doi: 10.3969/j.issn.0258-2724.2012.02.008

    SUN Yanguo, LIAO Haili, LI Mingshui. Mitigation measures of vortex-induced vibration of suspension bridge based on section model test[J]. Journal of Southwest Jiaotong University, 2012, 47(2): 218-223,264. doi: 10.3969/j.issn.0258-2724.2012.02.008
    [4]
    SIMIU E S R H. Wind effects on structures[M]. New York: Wiley, 1986.
    [5]
    EHSAN F, SCANLAN R H. Vortex-induced vibrations of flexible bridges[J]. Journal of Engineering Mechanics, 1990, 116(6): 1392-411. doi: 10.1061/(ASCE)0733-9399(1990)116:6(1392)
    [6]
    HARTLEN R T, CURRIE IAIN G. Lift-oscillator model of vortex-induced vibration[J]. Journal of the Engineering Mechanics Division, 1970, 96(5): 577-91. doi: 10.1061/JMCEA3.0001276
    [7]
    周帅,陈克坚,陈政清,等. 大跨桥梁涡激共振幅值估算方法的理论基础与应用[J]. 高速铁路技术,2019,10(5): 25-31. doi: 10.12098/j.issn.1674-8247.2019.05.006

    ZHOU Shuai, CHEN Kejian, CHEN Zhengqing, et al. Theoretical basis and practical applications of various vortex-induced vibration amplitudes estimation methods for large-span bridges[J]. High Speed Railway Technology, 2019, 10(5): 25-31. doi: 10.12098/j.issn.1674-8247.2019.05.006
    [8]
    张志田,陈政清. 桥梁节段与实桥涡激共振幅值的换算关系[J]. 土木工程学报,2011,44(7): 77-82. doi: 10.15951/j.tmgcxb.2011.07.009

    ZHANG Zhitian, CHEN Zhengqing. Similarity of amplitude of sectional model to that of full bridge in the case of vortex-induced resonance[J]. China Civil Engineering Journal, 2011, 44(7): 77-82. doi: 10.15951/j.tmgcxb.2011.07.009
    [9]
    周奇,孟晓亮,朱乐东. 基于非线性涡激力广义模型的涡振幅值换算[J]. 土木工程学报,2020,53(10): 82-88. doi: 10.15951/j.tmgcxb.2020.10.008

    ZHOU Qi, MENG Xiaoliang, ZHU Ledong. Amplitude conversion of vortex-induced vibration based on generalized model of nonlinear vortex-induced force[J]. China Civil Engineering Journal, 2020, 53(10): 82-88. doi: 10.15951/j.tmgcxb.2020.10.008
    [10]
    SUN Y G, LI M S, LIAO H L. Nonlinear approach of vortex-induced vibration for line-like structures[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 124: 1-6. doi: 10.1016/j.jweia.2013.10.011
    [11]
    IRWIN P. Full aeroelastic model tests[M]. [S.l.]: Routledge, 2017: 125-35.
    [12]
    HJORTH-HANSEN E. Section model tests[M]. [S.l.]: Routledge, 2017: 95-112.
    [13]
    秦浩,廖海黎,李明水. 变截面连续钢箱梁桥典型施工阶段涡激振动[J]. 西南交通大学学报,2014,49(5): 760-765,786. doi: 10.3969/j.issn.0258-2724.2014.05.003

    QIN Hao, LIAO Haili, LI Mingshui. Vortex-induced vibration of continuous steel box-girder bridge with variable cross-sections at typical erection stages[J]. Journal of Southwest Jiaotong University, 2014, 49(5): 760-765,786. doi: 10.3969/j.issn.0258-2724.2014.05.003
    [14]
    DUAN J L, HUANG W P. CFD-based numerical analysis of a variable cross-section cylinder[J]. Journal of Ocean University of China, 2014, 13(4): 584-588. doi: 10.1007/s11802-014-2048-0
    [15]
    陈政清. 工程结构的风致振动、稳定与控制[M]. 北京: 科学出版社, 2013.
    [16]
    王新敏. ANSYS结构动力分析与应用 [M]. 北京: 人民交通出版社, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views(381) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return