• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
LI Chunguang, MAO Yu, YAN Hubin, LIANG Aihong, HAN Yan. Experimental Study on Vortex-Induced Vibration Performance and Countermeasures for Side Girder Beam with Conveyer[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 886-893. doi: 10.3969/j.issn.0258-2724.20210224
Citation: LI Chunguang, MAO Yu, YAN Hubin, LIANG Aihong, HAN Yan. Experimental Study on Vortex-Induced Vibration Performance and Countermeasures for Side Girder Beam with Conveyer[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 886-893. doi: 10.3969/j.issn.0258-2724.20210224

Experimental Study on Vortex-Induced Vibration Performance and Countermeasures for Side Girder Beam with Conveyer

doi: 10.3969/j.issn.0258-2724.20210224
  • Received Date: 29 Mar 2021
  • Rev Recd Date: 29 Jun 2021
  • Publish Date: 12 Jul 2021
  • Conveyers on the bridge deck change the aerodynamic shape of the side girder. In order to explore the vortex-induced vibration performance and countermeasures of the side girder with a conveyer, a 1.00∶20.00 rigid segment model test of free suspension is carried out in wind tunnel. Firstly, the vortex-induced vibration performance of the side girder beam section with a conveyer is studied, and tests are conducted as to how it is affected by structural damping ratio. Secondly, the cases of whether a conveyer is equipped are compared. Finally, aerodynamic measures such as air nozzles, stabilizing plates at beam bottom, and horizontal baffles are used to optimize the vortex-induced vibration performance of the main girder section. The results show that the vortex-induced vibration performance of the side girder with a conveyer is poor at the specified 0° and ± 3° wind attack angles, and the maximum exceeds the specification limit value by 286%. The deck conveyer reduces the vortex-induced vibration stability of the main girder, and the peak value of the vortex-induced vibration response increases by 44%. The installation of stabilizing plates at beam bottom is beneficial to improve the vortex-induced vibration performance of the main beam, and the effect of stabilizing plates with the same height as the bottom of the beam becomes better with the increase in the number of stabilizing plates. The vortex-induced vibration suppression effect of the main beam is 93% when installing three stabilizing plates with a depth of 1.5 m. The 2.0 m high middle stabilizing plate extending 0.5 m from beam bottom can completely suppress the vortex-induced vibration. The nozzle has a little influence on the vortex-induced vibration performance of the main beam, but it has an optimal angle value in a certain range. When a horizontal baffle is separately arranged at the beam bottom, the peak value of vortex-induced vibration response is reduced by 17%. A combined measure of a nozzle, nozzle horizontal splitter plate, and horizontal baffle of 1 m width is adopted to optimize the main beam section, and the peak value of the vortex-induced vibration response of the main beam is reduced by 92%, which is far lower than the specification limit.

     

  • [1]
    葛耀君. 大跨度斜拉桥抗风[M]. 北京: 人民交通出版社, 2019.
    [2]
    管青海,李加武,胡兆同,等. 栏杆对典型桥梁断面涡激振动的影响研究[J]. 振动与冲击,2014,33(3): 150-156. doi: 10.3969/j.issn.1000-3835.2014.03.029

    GUAN Qinghai, LI Jiawu, HU Zhaotong, et al. Effects of railings on vortex-induced vibration of a bridge deck section[J]. Journal of Vibration and Shock, 2014, 33(3): 150-156. doi: 10.3969/j.issn.1000-3835.2014.03.029
    [3]
    刘君,廖海黎,万嘉伟,等. 检修车轨道导流板对流线型箱梁涡振的影响[J]. 西南交通大学学报,2015,50(5): 789-795. doi: 10.3969/j.issn.0258-2724.2015.05.004

    LIU Jun, LIAO Haili, WAN Jiawei, et al. Effect of guide vane beside maintenance rail on vortex-induced vibration of streamlined box girder[J]. Journal of Southwest Jiaotong University, 2015, 50(5): 789-795. doi: 10.3969/j.issn.0258-2724.2015.05.004
    [4]
    张天翼,孙延国,李明水,等. 宽幅双箱叠合梁涡振性能及抑振措施试验研究[J]. 中国公路学报,2019,32(10): 107-114,168.

    ZHANG Tianyi, SUN Yanguo, LI Mingshui, et al. Experimental study on vortex-induced vibration performance and aerodynamic countermeasures for a wide-width double-box composite beam[J]. China Journal of Highway and Transport, 2019, 32(10): 107-114,168.
    [5]
    龙俊贤,周旭辉,李前名,等. 带高防护结构的边箱叠合梁斜拉桥涡振性能及抑振措施研究[J]. 铁道科学与工程学报,2021,18(1): 119-127.

    LONG Junxian, ZHOU Xuhui, LI Qianming, et al. Experimental study on vortex-induced vibration performance and aerodynamic countermeasures for a double-box composite beam cable stayed bridge with high protective structure[J]. Journal of Railway Science and Engineering, 2021, 18(1): 119-127.
    [6]
    李欢,何旭辉,王汉封,等. π型断面超高斜拉桥涡振减振措施风洞试验研究[J]. 振动与冲击,2018,37(7): 62-68.

    LI Huan, HE Xuhui, WANG Hanfeng, et al. Wind tunnel tests for vortex-induced vibration control measures of a super high cable-stayed bridge with π-cross section[J]. Journal of Vibration and Shock, 2018, 37(7): 62-68.
    [7]
    李春光,黄静文,张记,等. 边主梁叠合梁涡振性能气动优化措施风洞试验研究[J]. 振动与冲击,2018,37(17): 86-92.

    LI Chunguang, HUANG Jingwen, ZHANG Ji, et al. Aerodynamic optimization measures for VIV performances of a side girder composite beam based on wind tunnel tests[J]. Journal of Vibration and Shock, 2018, 37(17): 86-92.
    [8]
    张志田,卿前志,肖玮,等. 开口截面斜拉桥涡激共振风洞试验及减振措施研究[J]. 湖南大学学报(自然科学版),2011,38(7): 1-5.

    ZHANG Zhitian, QING Qianzhi, XIAO Wei, et al. Vortex-induced vibration and control method for a cable-stayed bridge with open cross section[J]. Journal of Hunan University (Natural Sciences), 2011, 38(7): 1-5.
    [9]
    IRWIN P A. Bluff body aerodynamics in wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6/7): 701-712.
    [10]
    KUBO Y, SADASHIMA K, YAMAGUCHI E, et al. Improvement of aeroelastic instability of shallow π section[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(14/15): 1445-1457.
    [11]
    赵林,李珂,王昌将,等. 大跨桥梁主梁风致稳定性被动气动控制措施综述[J]. 中国公路学报,2019,32(10): 34-48.

    ZHAO Lin, LI Ke, WANG Changjiang, et al. Review on passive aerodynamic countermeasures on main girders aiming at wind-induced stabilities of long-span bridges[J]. China Journal of Highway and Transport, 2019, 32(10): 34-48.
    [12]
    KUBO Y, KIMURA K, SADASHIMA K, et al. Aerodynamic performance of improved shallow π shape bridge deck[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12/13/14/15): 2113-2125.
    [13]
    LI K, QIAN G, GE Y J, et al. Control effect and mechanism investigation on the horizontal flow-isolating plate for PI shaped bridge decks’ VIV stability[J]. Wind and Structure, 2019, 28(2): 99-110.
    [14]
    钱国伟,曹丰产,葛耀君. Ⅱ型叠合梁斜拉桥涡振性能及气动控制措施研究[J]. 振动与冲击,2015,34(2): 176-181.

    QIAN Guowei, CAO Fengchan, GE Yaojun. Vortex-induced vibration performance of a cable-stayed bridge with Ⅱ shaped composite deck and its aerodynamic control measures[J]. Journal of Vibration and Shock, 2015, 34(2): 176-181.
    [15]
    孟晓亮,郭震山,丁泉顺,等. 风嘴角度对封闭和半封闭箱梁涡振及颤振性能的影响[J]. 工程力学,2011,28(增1): 184-188,194.

    MENG Xiaoliang, GUO Zhenshan, DING Quanshun, et al. Influence of wind fairing angle on vortex-induced vibrations and flutter performances of closed and semi-closed box decks[J]. Engineering Mechanics, 2011, 28(S1): 184-188,194.
    [16]
    颜宇光,杨詠昕,周锐. 开口断面主梁斜拉桥的涡激共振控制试验研究[J]. 中国科技论文,2015,10(7): 760-764,787.

    YAN Yuguang, YANG Yongxin, ZHOU Rui. Experimental study on vortex-induced vibration control measure for cable-stayed bridge with open sections[J]. China Sciencepaper, 2015, 10(7): 760-764,787.
  • Relative Articles

    [1]MEI Hanyu, LIAO Haili, WANG Changjiang. Nonlinear Aerodynamic Force Identification and Nonlinear Flutter Analysis Based on Autoencoder[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 599-607. doi: 10.3969/j.issn.0258-2724.20230261
    [2]HUANG Lin, DONG Jiahui, LIAO Haili, PU Shiyu, WANG Qi. Vortex-Induced Vibration (VIV) Aerodynamic Measures of Girder with Side Beam Based on Computation Fluid Dynamics (CFD) and Wind Tunnel Test[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 343-352. doi: 10.3969/j.issn.0258-2724.20220208
    [3]HE Jiajun, XIANG Huoyue, ZHU Jin, ZHANG Botao, LI Yongle. Experimental Study on Shelter Effect of Bridge Tower on Single-Level Rail-Cum-Road Bridge[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 388-397. doi: 10.3969/j.issn.0258-2724.20210286
    [4]MEI Hanyu, WANG Qi, LIAO Haili, ZHANG Yan. Flutter Derivative Prediction of Flat Box Girder Based on Ensembled Neural Network[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 894-902. doi: 10.3969/j.issn.0258-2724.20200408
    [5]LEI Yongfu, LI Ming, SUN Yanguo, LI Mingshui. Experimental Study on Flutter Performance of Long-Span Suspension Bridge with Double-Deck Truss Girder[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1224-1232. doi: 10.3969/j.issn.0258-2724.20200599
    [6]MA Cunming, WANG Junxin, LUO Nan, LI Hongjiu, LIAO Haili. Vortex-Induced Vibration Performance and Control Measures of Wide Twin-Box Girder[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 724-730. doi: 10.3969/j.issn.0258-2724.20161029
    [7]LIN Yongjun, SHEN Yanchen, LI Mingshui, LUO Nan. Evaluation of Wind Pressure Distribution for Large-Span Warpage Roof via Wind Tunnel Testing and Numerical Simulation[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 226-233. doi: 10.3969/j.issn.0258-2724.2018.02.002
    [8]LI Ming, SUN Yanguo, LI Mingshui, WU Bo. Vortex-Induced Vibration Performance of Wide Streamlined Box Girder and Aerodynamic Countermeasure Research[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 712-719. doi: 10.3969/j.issn.0258-2724.2018.04.007
    [9]XIE Qiang, ZHI Xi. Wind Tunnel Test of Tension Effects on Vibration Responses of Catenary System[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 1009-1016. doi: 10.3969/j.issn.0258-2724.2018.05.018
    [10]ZHENG Shixiong, GUO Junfeng, ZHU Jinbo, TANG Yu. Characteristics and Suppression Neasures for Soft Flutter of Main Girder with П-Shaped Cross Section[J]. Journal of Southwest Jiaotong University, 2017, 30(3): 458-465. doi: 10.3969/j.issn.0258-2724.2017.03.004
    [11]LIU Jun, LIAO Haili, WAN Jiawei, MA Cunming. Effect of Guide Vane beside Maintenance Rail on Vortex-Induced Vibration of Streamlined Box Girder[J]. Journal of Southwest Jiaotong University, 2015, 28(5): 789-795. doi: 10.3969/j.issn.0258-2724.2015.05.004
    [12]LI Yongle, HU Peng, ZHANG Mingjin, LIAO Haili. Aerodynamic Characteristics of Vehicle-Bridge System under Cross Wind: Wind Tunnel Test System with Moving Vehicle Model[J]. Journal of Southwest Jiaotong University, 2012, 25(1): 50-56. doi: 10.3969/j.issn.0258-2724.2012.021.01.009
    [13]LI Yongle, HU Peng, ZHANG Mingjin, 2, XU Youlin, . Aerodynamic Characteristics of Vehicle-Bridge System under Cross Wind: Parameter Studies Based on Wind Tunnel Test[J]. Journal of Southwest Jiaotong University, 2012, 25(2): 210-217. doi: 10.3969/j.issn.0258-2724.2012.02.007
    [14]SUN Yanguo, LIAO Haili, LI Mingshui. Mitigation Measures of Vortex-Induced Vibration of Suspension Bridge Based on Section Model Test[J]. Journal of Southwest Jiaotong University, 2012, 25(2): 218-223. doi: 10.3969/j.issn.0258-2724.2012.02.008
    [15]SUO Qifeng, LI Mingshui, HE Xiangdong. Effects of 3D Wind Flow on Drag Coefficients of Stay Cables[J]. Journal of Southwest Jiaotong University, 2010, 23(6): 882-887. doi: 10.3969/j.issn.0258-2724.2010.06.010
    [16]LIUGao, WANGXiu-wei, QIANG Shi-zhong. Suppressing the Flutter of Suspension Bridges with Additional Surfaces Attached belowthe Trailing Edge Deck[J]. Journal of Southwest Jiaotong University, 2001, 14(1): 12-16.
    [17]GE Yu-mei, LI Yong-le, HE Xiang-dong. Study on Wind-Induced Loads of Train-Bridge System by Wind Tunnel Test[J]. Journal of Southwest Jiaotong University, 2001, 14(6): 612-616.
    [18]LUO Xiong, PAN Yan-yu. Buffeting Analysis for Concrete-Filled Tubular Arch Bridge in Time Domain[J]. Journal of Southwest Jiaotong University, 2000, 13(5): 475-479.
    [19]HE Xiang-dong, ZHOU Shu-hua. Wind Tunnel Test Study on Wind-Induced Internal Force of a Cable-Stayed Bridge Tower[J]. Journal of Southwest Jiaotong University, 2000, 13(5): 471-474.
  • Cited by

    Periodical cited type(1)

    1. 禹争华. 悬挑人行道对某PK梁斜拉桥抗风性能的影响试验研究. 中外公路. 2023(04): 131-136 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-092024-102024-112024-122025-012025-022025-032025-032025-042025-052025-062025-0702.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 35.1 %FULLTEXT: 35.1 %META: 60.8 %META: 60.8 %PDF: 4.1 %PDF: 4.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.6 %其他: 4.6 %Bacoor: 0.2 %Bacoor: 0.2 %Malang: 0.4 %Malang: 0.4 %[]: 0.2 %[]: 0.2 %上海: 0.2 %上海: 0.2 %临汾: 0.5 %临汾: 0.5 %北京: 2.7 %北京: 2.7 %十堰: 0.2 %十堰: 0.2 %南京: 2.3 %南京: 2.3 %哥伦布: 0.7 %哥伦布: 0.7 %宣城: 0.2 %宣城: 0.2 %广州: 0.2 %广州: 0.2 %张家口: 1.1 %张家口: 1.1 %悉尼: 0.4 %悉尼: 0.4 %成都: 1.6 %成都: 1.6 %扬州: 0.4 %扬州: 0.4 %揭阳: 0.2 %揭阳: 0.2 %杭州: 0.5 %杭州: 0.5 %武汉: 1.2 %武汉: 1.2 %江门: 0.2 %江门: 0.2 %池州: 0.7 %池州: 0.7 %沈阳: 0.2 %沈阳: 0.2 %济南: 0.7 %济南: 0.7 %温州: 0.2 %温州: 0.2 %湖州: 0.2 %湖州: 0.2 %漯河: 0.7 %漯河: 0.7 %烟台: 0.2 %烟台: 0.2 %石家庄: 0.9 %石家庄: 0.9 %芒廷维尤: 22.9 %芒廷维尤: 22.9 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.2 %苏州: 0.2 %荆门: 0.2 %荆门: 0.2 %衡水: 0.2 %衡水: 0.2 %西宁: 47.9 %西宁: 47.9 %诺沃克: 1.8 %诺沃克: 1.8 %运城: 1.8 %运城: 1.8 %邯郸: 0.2 %邯郸: 0.2 %重庆: 0.2 %重庆: 0.2 %镇江: 0.7 %镇江: 0.7 %长沙: 2.0 %长沙: 2.0 %其他BacoorMalang[]上海临汾北京十堰南京哥伦布宣城广州张家口悉尼成都扬州揭阳杭州武汉江门池州沈阳济南温州湖州漯河烟台石家庄芒廷维尤芝加哥苏州荆门衡水西宁诺沃克运城邯郸重庆镇江长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article views(342) PDF downloads(21) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return