• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 54 Issue 2
Jun.  2019
Turn off MathJax
Article Contents
LIN Siyuan, LIAO Haili, WANG Qi, XIONG Long. Effects of Oscillation Amplitude on Nonlinear Motion-Induced Force for 5 ∶ 1 Rectangular Cylinder[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 249-259. doi: 10.3969/j.issn.0258-2724.20170573
Citation: LIN Siyuan, LIAO Haili, WANG Qi, XIONG Long. Effects of Oscillation Amplitude on Nonlinear Motion-Induced Force for 5 ∶ 1 Rectangular Cylinder[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 249-259. doi: 10.3969/j.issn.0258-2724.20170573

Effects of Oscillation Amplitude on Nonlinear Motion-Induced Force for 5 ∶ 1 Rectangular Cylinder

doi: 10.3969/j.issn.0258-2724.20170573
  • Received Date: 23 Jul 2017
  • Rev Recd Date: 25 Sep 2017
  • Available Online: 08 Oct 2018
  • Publish Date: 01 Apr 2019
  • Investigations on the nonlinear motion-induced force acting on a rectangular cylinder with aspect ratio 5∶1, which is significant in the analysis of nonlinear aeroelastic behaviour for bluff sections, are part of fundamental and cutting-edge research on bluff body aerodynamics. Combined with surface synchronous pressure measurement, forced motion wind tunnel tests were carried out to investigate the influence of oscillation amplitude on the spectral characteristics of motion-induced force and pressure distribution for a 5∶1 rectangular cylinder. After analyzing the pressure distribution mode based on the proper orthogonal decomposition (POD) method, the mechanism for nonlinear motion-induced force was discussed. Experiments and analysis indicate that the higher harmonics in the motion-induced force acting on a 5∶1 rectangular cylinder only shows significant proportion when the section is under pitching motion and the amplitude exceeds 8°, while the linear components grow nonlinearly with the increase of oscillation amplitude. When the rectangular cylinder rotates with amplitude less than 8° or oscillates vertically, the reattaching point is near the trailing edge and remains stable during the period of motion. Vortices on the top surface shed directly into the wake flow and the corresponding pressure mode is symmetric, all of which suggest that the motion-induced force is determined by a main vortex with single frequency. When the rectangular cylinder rotates with amplitude greater than or equal to 8°, the first symmetric pressure mode along with the second and third anti-symmetrical pressure mode appear simultaneously. The corresponding reattaching point is concentrated at the leading edge, so that vortices continue to develop along the model surface. These suggest the existence of several vortices with different frequencies. The secondary vortex with a frequency larger than the motion frequency leads to the occurrence of higher pressure mode, and results in higher harmonics in motion-induced force.

     

  • loading
  • BRUNO L, SALVETTI M V, RICCIARDELLI F. Benchmark on the aerodynamics of a rectangular 5∶1 cylinder:an overview after the first four years of activity[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2014, 126(1): 87-106.
    MATSUMOTO M, SHIRATO H, ARAKI K, et al. Spanwise coherence characteristics of surface pressure field on 2-D bluff bodies[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2001, 91(1): 155-63.
    RICCIARDELLI F, MARRA A M. Sectional aerodynamic forces and their longitudinal correlation on a vibrating 5∶1 rectangular cylinder[C]//Proceedings of the 6th International Colloquium on Bluff Body Aerodynamics and Applications. Milan: [s.n.], 2008: 1-4
    LE T H, MATSUMOTO M, SHIRATO H. Spanwise coherent structure of wind turbulence and induced pressure on rectangular cylinders[J]. Wind and Structures, 2009, 12(5): 441. doi: 10.12989/was.2009.12.5.441
    HAAN F L, KAREEM A. Anatomy of turbulence effects on the aerodynamics of an oscillating prism[J]. Journal of Engineering Mechanics, 2009, 135(9): 987-99. doi: 10.1061/(ASCE)EM.1943-7889.0000012
    TAMURA T, ITOH Y, WADA A, et al. Numerical study of pressure fluctuations on a rectangular cylinder in aerodynamic oscillation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54(2): 39-50.
    刘志文, 陈政清. H/B=1/5矩形断面气动性能研究[C]//第十三届全国结构风工程学术会议论文集(上册). 大连: [出版者不详], 2007: 91-99
    ZHU Z. LES prediction of aerodynamics and coherence analysis of fluctuating pressure on box girders of long-span bridges[J]. Computers & Fluids, 2015, 110: 169-180.
    刘小兵, 张海东, 王彦彪. 宽高比为5的矩形断面梁气动力展向相关性研究[J]. 工程力学, 2015, 32(增刊1): 50-54

    LIU Xiaobing, ZHANG Haidong, WANG Yanbiao. Study on spanwise correlation of aerodynamic force of rectangular cylinder with aspect ratio 5[J]. Engineering Mechanics, 2015, 32(S1): 50-54
    NODA M, UTSUNOMIYA H, NAGAO F, et al. Effects of oscillation amplitude on aerodynamic derivatives[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(1/2): 101-11.
    WANG Q, LIAO H, WAN J, et al. Coupling and nonlinearity and spanwise correlation in aerodynamic force of a rectangular cylinder[C]//Proceedings of 8th International Colloquium on Bluff Body Aerodynamics and Applications(BBAA VIII). Boston: [s.n.], 2016: 1-10
    陈政清,于向东. 大跨桥梁颤振自激力的强迫振动法研究[J]. 土木工程学报,2002,35(5): 34-41. doi: 10.3321/j.issn:1000-131X.2002.05.008

    CHEN Zhengqing, YU Xiangdong. A new method for measuring flutter self-excited forces of long-span bridges[J]. China Civil Engineering Journal, 2002, 35(5): 34-41. doi: 10.3321/j.issn:1000-131X.2002.05.008
    DIANA G, RESTA F, ROCCHI D. A new numerical approach to reproduce bridge aerodynamic non-linearities in time domain[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10/11): 1871-84.
    王骑. 大跨度桥梁断面非线性自激气动力与非线性气动稳定性研究[D]. 成都: 西南交通大学, 2011
    唐煜. 流线型箱梁断面非线性自激力与非线性颤振响应研究[D]. 成都: 西南交通大学, 2015
    HUANG L, XU Y L, LIAO H. Nonlinear aerodynamic forces on thin flat plate:numerical study[J]. Journal of Fluids & Structures, 2014, 44(7): 182-94.
    马存明. 流线箱型桥梁断面三维气动导纳研究[D]. 成都: 西南交通大学, 2007
    COOK N. Designers’ guide to EN 1991-1-4 eurocode 1: actions on structures, general actions part 1-4. Wind actions[M]. [S.l]: Thomas Telford Publishing, 2007: 66-67
    NAKAMURA Y, OZONO S. The effects of turbulence on a separated and reattaching flow[J]. Journal of Fluid Mechanics, 1987, 178: 477-90. doi: 10.1017/S0022112087001320
    MATSUMOTO M. Aerodynamic damping of prisms[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1996, 59(2/3): 159-75.
    李少鹏. 矩形和流线型箱梁断面抖振力特性研究[D]. 成都: 西南交通大学, 2015
    HOLMES J D. Analysis and synthesis of pressure fluctuations on bluff bodies using eigenvectors[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1990, 33(1/2): 219-30.
    刘祖军,杨詠昕. H形桥梁断面颤振的流场驱动机理及气流能量分析[J]. 土木工程学报,2013,46(4): 110-116.

    LIU Zujun, YANG Yongxin. Flow field mechanism and air energy characteristic of H-shape section in flutter[J]. China Civil Engineering Journal, 2013, 46(4): 110-116.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article views(534) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return