• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
LIN Siyuan, LIAO Haili, WANG Qi, XIONG Long. Effects of Oscillation Amplitude on Nonlinear Motion-Induced Force for 5 ∶ 1 Rectangular Cylinder[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 249-259. doi: 10.3969/j.issn.0258-2724.20170573
Citation: LIN Siyuan, LIAO Haili, WANG Qi, XIONG Long. Effects of Oscillation Amplitude on Nonlinear Motion-Induced Force for 5 ∶ 1 Rectangular Cylinder[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 249-259. doi: 10.3969/j.issn.0258-2724.20170573

Effects of Oscillation Amplitude on Nonlinear Motion-Induced Force for 5 ∶ 1 Rectangular Cylinder

doi: 10.3969/j.issn.0258-2724.20170573
  • Received Date: 23 Jul 2017
  • Rev Recd Date: 25 Sep 2017
  • Available Online: 08 Oct 2018
  • Publish Date: 01 Apr 2019
  • Investigations on the nonlinear motion-induced force acting on a rectangular cylinder with aspect ratio 5∶1, which is significant in the analysis of nonlinear aeroelastic behaviour for bluff sections, are part of fundamental and cutting-edge research on bluff body aerodynamics. Combined with surface synchronous pressure measurement, forced motion wind tunnel tests were carried out to investigate the influence of oscillation amplitude on the spectral characteristics of motion-induced force and pressure distribution for a 5∶1 rectangular cylinder. After analyzing the pressure distribution mode based on the proper orthogonal decomposition (POD) method, the mechanism for nonlinear motion-induced force was discussed. Experiments and analysis indicate that the higher harmonics in the motion-induced force acting on a 5∶1 rectangular cylinder only shows significant proportion when the section is under pitching motion and the amplitude exceeds 8°, while the linear components grow nonlinearly with the increase of oscillation amplitude. When the rectangular cylinder rotates with amplitude less than 8° or oscillates vertically, the reattaching point is near the trailing edge and remains stable during the period of motion. Vortices on the top surface shed directly into the wake flow and the corresponding pressure mode is symmetric, all of which suggest that the motion-induced force is determined by a main vortex with single frequency. When the rectangular cylinder rotates with amplitude greater than or equal to 8°, the first symmetric pressure mode along with the second and third anti-symmetrical pressure mode appear simultaneously. The corresponding reattaching point is concentrated at the leading edge, so that vortices continue to develop along the model surface. These suggest the existence of several vortices with different frequencies. The secondary vortex with a frequency larger than the motion frequency leads to the occurrence of higher pressure mode, and results in higher harmonics in motion-induced force.

     

  • BRUNO L, SALVETTI M V, RICCIARDELLI F. Benchmark on the aerodynamics of a rectangular 5∶1 cylinder:an overview after the first four years of activity[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2014, 126(1): 87-106.
    MATSUMOTO M, SHIRATO H, ARAKI K, et al. Spanwise coherence characteristics of surface pressure field on 2-D bluff bodies[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2001, 91(1): 155-63.
    RICCIARDELLI F, MARRA A M. Sectional aerodynamic forces and their longitudinal correlation on a vibrating 5∶1 rectangular cylinder[C]//Proceedings of the 6th International Colloquium on Bluff Body Aerodynamics and Applications. Milan: [s.n.], 2008: 1-4
    LE T H, MATSUMOTO M, SHIRATO H. Spanwise coherent structure of wind turbulence and induced pressure on rectangular cylinders[J]. Wind and Structures, 2009, 12(5): 441. doi: 10.12989/was.2009.12.5.441
    HAAN F L, KAREEM A. Anatomy of turbulence effects on the aerodynamics of an oscillating prism[J]. Journal of Engineering Mechanics, 2009, 135(9): 987-99. doi: 10.1061/(ASCE)EM.1943-7889.0000012
    TAMURA T, ITOH Y, WADA A, et al. Numerical study of pressure fluctuations on a rectangular cylinder in aerodynamic oscillation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54(2): 39-50.
    刘志文, 陈政清. H/B=1/5矩形断面气动性能研究[C]//第十三届全国结构风工程学术会议论文集(上册). 大连: [出版者不详], 2007: 91-99
    ZHU Z. LES prediction of aerodynamics and coherence analysis of fluctuating pressure on box girders of long-span bridges[J]. Computers & Fluids, 2015, 110: 169-180.
    刘小兵, 张海东, 王彦彪. 宽高比为5的矩形断面梁气动力展向相关性研究[J]. 工程力学, 2015, 32(增刊1): 50-54

    LIU Xiaobing, ZHANG Haidong, WANG Yanbiao. Study on spanwise correlation of aerodynamic force of rectangular cylinder with aspect ratio 5[J]. Engineering Mechanics, 2015, 32(S1): 50-54
    NODA M, UTSUNOMIYA H, NAGAO F, et al. Effects of oscillation amplitude on aerodynamic derivatives[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(1/2): 101-11.
    WANG Q, LIAO H, WAN J, et al. Coupling and nonlinearity and spanwise correlation in aerodynamic force of a rectangular cylinder[C]//Proceedings of 8th International Colloquium on Bluff Body Aerodynamics and Applications(BBAA VIII). Boston: [s.n.], 2016: 1-10
    陈政清,于向东. 大跨桥梁颤振自激力的强迫振动法研究[J]. 土木工程学报,2002,35(5): 34-41. doi: 10.3321/j.issn:1000-131X.2002.05.008

    CHEN Zhengqing, YU Xiangdong. A new method for measuring flutter self-excited forces of long-span bridges[J]. China Civil Engineering Journal, 2002, 35(5): 34-41. doi: 10.3321/j.issn:1000-131X.2002.05.008
    DIANA G, RESTA F, ROCCHI D. A new numerical approach to reproduce bridge aerodynamic non-linearities in time domain[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10/11): 1871-84.
    王骑. 大跨度桥梁断面非线性自激气动力与非线性气动稳定性研究[D]. 成都: 西南交通大学, 2011
    唐煜. 流线型箱梁断面非线性自激力与非线性颤振响应研究[D]. 成都: 西南交通大学, 2015
    HUANG L, XU Y L, LIAO H. Nonlinear aerodynamic forces on thin flat plate:numerical study[J]. Journal of Fluids & Structures, 2014, 44(7): 182-94.
    马存明. 流线箱型桥梁断面三维气动导纳研究[D]. 成都: 西南交通大学, 2007
    COOK N. Designers’ guide to EN 1991-1-4 eurocode 1: actions on structures, general actions part 1-4. Wind actions[M]. [S.l]: Thomas Telford Publishing, 2007: 66-67
    NAKAMURA Y, OZONO S. The effects of turbulence on a separated and reattaching flow[J]. Journal of Fluid Mechanics, 1987, 178: 477-90. doi: 10.1017/S0022112087001320
    MATSUMOTO M. Aerodynamic damping of prisms[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1996, 59(2/3): 159-75.
    李少鹏. 矩形和流线型箱梁断面抖振力特性研究[D]. 成都: 西南交通大学, 2015
    HOLMES J D. Analysis and synthesis of pressure fluctuations on bluff bodies using eigenvectors[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1990, 33(1/2): 219-30.
    刘祖军,杨詠昕. H形桥梁断面颤振的流场驱动机理及气流能量分析[J]. 土木工程学报,2013,46(4): 110-116.

    LIU Zujun, YANG Yongxin. Flow field mechanism and air energy characteristic of H-shape section in flutter[J]. China Civil Engineering Journal, 2013, 46(4): 110-116.
  • Relative Articles

    [1]YANG Meng, WANG Yunfei, ZHAO Jiabin, ZHOU Jing, WANG Yongjing, LI Yongle. Vortex-Induced Vibration Response of Bridges Considering Both Spanwise Variation of Vibration Amplitude and Correlation of Aerodynamic Forces[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 45-52. doi: 10.3969/j.issn.0258-2724.20220714
    [2]LI Yongle, PAN Junzhi, TI Zilong, RAO Gang. Inversion Method of Vortex-Induced Vibration Amplitude for Long-Span Bridges with Partially Installed Noise Barrier[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 183-190. doi: 10.3969/j.issn.0258-2724.20210172
    [3]LI Yuanfu, JIANG Pin, FAN Min, FAN Huihui, WU Wenqian, YANG Changrui. Optimal Selection of Mountain Railway Location Design Based on Twice-Improved TOPSIS Method[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 253-260. doi: 10.3969/j.issn.0258-2724.20200056
    [4]ZENG Jiadong, LI Mingshui. Experimental Study of Spectral Characteristics of Fluctuating Wind Loads on High-Rise Building with Rectangular Section[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 83-90. doi: 10.3969/j.issn.0258-2724.2017.01.012
    [5]WANG Qi, LIAO Haili, LI Mingshui, MA Cunming. Empirical Mathematical Model for Nonlinear Motion-Induced Aerodynamic Force of Bridge Girder[J]. Journal of Southwest Jiaotong University, 2013, 26(2): 271-277. doi: 10.3969/j.issn.0258-2724.2013.02.013
    [6]ZHANG Yan-Qin, ZHANG Guang-Hui. Strength Calculation of Planar Double-Enveloping Hourglass Worm Gears[J]. Journal of Southwest Jiaotong University, 2011, 24(1): 138-142. doi: 10.3969/j.issn.0258-2724.2011.01.022
    [7]SHEN Zhi-Jun, CENG Hua-Shen, GAO Zhi-Jiang. Double-Feedback-Based Two-Stage Switch Architecture[J]. Journal of Southwest Jiaotong University, 2011, 24(5): 814-819. doi: 10.3969/j.issn.0258-2724.2011.05.017
    [8]HU Xuegang, CAO Yongzhao, WU Gongqing. Effective Twice-Clustering Algorithm for Data Streams[J]. Journal of Southwest Jiaotong University, 2009, 22(4): 490-494.
    [9]PU Yunwei, JIN Weidong, HU Laizhao. Automatic Classification of Radar Emitter Signals Based on Cascade Feature Extractions[J]. Journal of Southwest Jiaotong University, 2007, 20(3): 373-379.
    [10]TIAN Huaiwen, GUO Shizhang. Research on Algorithm of Quadric Surface Fitting in Reverse Modeling for Mechanical Parts[J]. Journal of Southwest Jiaotong University, 2007, 20(5): 553-557.
    [11]YANG Zhian, HAN Yanbin. Primary Resonance of Thin Rectangular Plate with Material Nonlinearity on Winkler Foundation[J]. Journal of Southwest Jiaotong University, 2007, 20(1): 61-65.
    [12]LUO Xiaojun, HUANG Dingfa, LIU Guoxiang. Automated Detection of Permanent Scatterers in Time Serial Differential Radar Interferometry[J]. Journal of Southwest Jiaotong University, 2007, 20(4): 414-418.
    [13]ZHU Ming, JIN Weidong, HU Laizhao. Cascade Feature Extraction for Radar Emitter Signals Based on Atomic Decomposition[J]. Journal of Southwest Jiaotong University, 2007, 20(6): 659-664.
    [14]YU Kai, XUE Changhong. Smoothly Blending of Three Quadratic Algebraic Surfaces along Planar Sections[J]. Journal of Southwest Jiaotong University, 2006, 19(3): 400-403.
    [15]WANG Ci-guang. Simple Method of Determining the Initial Value in Secondary Exponential Smoothing Method[J]. Journal of Southwest Jiaotong University, 2004, 17(3): 269-271.
    [16]YEJian-jun. Subharmonic Resonance of Nonlinear Forced Vibration Systems[J]. Journal of Southwest Jiaotong University, 2003, 16(6): 673-676.
    [17]QIAN Shu-hua, WANG Xin-qing, LIHuan-liang. Application of Quadric Time-Frequency Distribution to Mechanical Fault Diagnosis[J]. Journal of Southwest Jiaotong University, 2003, 16(5): 578-580.
    [18]JI Qing-bing, HUANG Guang-xin. On Secondly Extended Complex-Rotary Codes and Their Dual Codes[J]. Journal of Southwest Jiaotong University, 2001, 14(5): 549-552.
  • Cited by

    Periodical cited type(8)

    1. 谭社会,张雨潇,周丽,时瑾. 多基准线与高通滤波方法的大跨度桥上轨道精调方案论证. 铁道科学与工程学报. 2025(02): 613-624 .
    2. 舒英杰,王铭,陆粤,禹壮壮,陈嵘,王平. 基于车体加速度的超大跨度桥上线路纵断面优化方法. 铁道标准设计. 2024(04): 35-41 .
    3. 刘彦林,李再帏,谭社会. 千米跨度高铁斜拉桥轨道平顺性控制拟合参数分析. 振动与冲击. 2024(16): 176-184+218 .
    4. 谭社会,张雨潇,周丽,时瑾. 基于温度变形的五峰山长江大桥轨道线形调控方法. 铁道科学与工程学报. 2024(10): 4076-4088 .
    5. 禹壮壮,舒英杰,陆粤,王铭,陈嵘,王平. 基于成桥施工偏差的大跨度铁路桥梁线路纵断面设计适应性分析. 铁道标准设计. 2023(03): 61-67+73 .
    6. 陈雨,安博洋,潘自立,莫宏愿,王平,方嘉晟,钱瑶,徐井芒. 考虑尖轨变截面廓形的轮轨接触与磨耗分析. 西南交通大学学报. 2022(06): 1250-1258 . 本站查看
    7. 谭社会,李再帏,时瑾,马登科. 线路纵断面设置对千米级高铁悬索桥动力学行为的影响. 中国铁道科学. 2021(06): 58-67 .
    8. 梁军,于扬,王文飒,陈龙. 混行环境下CACC系统驾乘舒适性优化控制. 西南交通大学学报. 2021(06): 1290-1297 . 本站查看

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-03020406080100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.5 %FULLTEXT: 30.5 %META: 51.3 %META: 51.3 %PDF: 18.2 %PDF: 18.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.1 %其他: 4.1 %其他: 0.4 %其他: 0.4 %上海: 1.5 %上海: 1.5 %临汾: 0.4 %临汾: 0.4 %北京: 1.5 %北京: 1.5 %南京: 19.3 %南京: 19.3 %南通: 0.2 %南通: 0.2 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.4 %哥伦布: 0.4 %唐山: 0.4 %唐山: 0.4 %安康: 0.2 %安康: 0.2 %常州: 0.2 %常州: 0.2 %广州: 0.2 %广州: 0.2 %广西桂林全州县: 0.4 %广西桂林全州县: 0.4 %张家口: 2.2 %张家口: 2.2 %成都: 0.9 %成都: 0.9 %扬州: 0.9 %扬州: 0.9 %杭州: 1.5 %杭州: 1.5 %池州: 1.1 %池州: 1.1 %漯河: 0.9 %漯河: 0.9 %漳州: 0.2 %漳州: 0.2 %石家庄: 0.2 %石家庄: 0.2 %芒廷维尤: 13.4 %芒廷维尤: 13.4 %芝加哥: 1.3 %芝加哥: 1.3 %西宁: 44.4 %西宁: 44.4 %贵阳: 0.6 %贵阳: 0.6 %邯郸: 0.2 %邯郸: 0.2 %重庆: 1.1 %重庆: 1.1 %长沙: 1.3 %长沙: 1.3 %青岛: 0.2 %青岛: 0.2 %其他其他上海临汾北京南京南通哈尔滨哥伦布唐山安康常州广州广西桂林全州县张家口成都扬州杭州池州漯河漳州石家庄芒廷维尤芝加哥西宁贵阳邯郸重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article views(567) PDF downloads(83) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return