• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
TANG Xiaoxuan, DU Guowei, SUN Zhe, ZHAO Lei. Response Analysis and Load Optimization of High Temperature Reactor-Pebblebed Modules Main Helium Blower Rotor System[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 993-1002. doi: 10.3969/j.issn.0258-2724.20230503
Citation: TANG Xiaoxuan, DU Guowei, SUN Zhe, ZHAO Lei. Response Analysis and Load Optimization of High Temperature Reactor-Pebblebed Modules Main Helium Blower Rotor System[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 993-1002. doi: 10.3969/j.issn.0258-2724.20230503

Response Analysis and Load Optimization of High Temperature Reactor-Pebblebed Modules Main Helium Blower Rotor System

doi: 10.3969/j.issn.0258-2724.20230503
  • Received Date: 27 Sep 2023
  • Rev Recd Date: 05 Sep 2024
  • Publish Date: 12 Oct 2024
  • In response to the parameter design and performance optimization of radial active magnetic bearings in the magnetic bearing rotor system of the high temperature reactor-pebblebed modules (HTR-PM) main helium blower, the system boundary conditions were sorted out by applying the expected characteristics to dynamic analysis. Meanwhile, the transient analysis method was used to simulate the influence of bearing control parameters on the system’s response and loads, and the ideal control parameter range that satisfied the design expectations for the rotor system was obtained. Subsequently, based on the dynamic response results of the rotor under different rotational speeds, equivalent unbalance, bearing stiffness, and bearing damping within the parameter range, the influence between the control parameters and rotor response was analyzed. According to the obtained patterns, the optimal control parameters for the magnetic bearing–rotor system at each frequency band within the operating frequency range were determined. Finally, the variation laws between the response displacement, bearing load, equivalent stiffness, and damping ratio of magnetic bearing–rotor system under different working conditions and performance requirements were summarized. A control scheme for selecting appropriate control parameters based on the real-time operating frequency of the rotor was designed and verified. The results show that when the control parameter selection meets the optimization conditions, this method is able to suppress the overall amplitude of the unbalanced response, eliminate the resonance peaks, and optimize the maximum load at the bearings while achieving the working requirements of the rotor system.

     

  • [1]
    ZHANG Z Y, SUN Y L. Economic potential of modular reactor nuclear power plants based on the Chinese HTR-PM project[J]. Nuclear Engineering and Design, 2007, 237(23): 2265-2274. doi: 10.1016/j.nucengdes.2007.04.001
    [2]
    ZHANG Z Y, WU Z X, WANG D Z, et al. Current status and technical description of Chinese 2 × 250 MWth HTR-PM demonstration plant[J]. Nuclear Engineering and Design, 2009, 239(7): 1212-1219. doi: 10.1016/j.nucengdes.2009.02.023
    [3]
    赵钢,马艳秀,符晓铭,等. 高温堆磁悬浮轴承备用氦风机热工实验研究[J]. 原子能科学技术,2009,43(增2): 252-255.

    ZHAO Gang, MA Yanxiu, FU Xiaoming, et al. Thermal experimental study on standby helium fan for magnetic bearing of high temperature reactor[J]. Atomic Energy Science and Technology, 2009, 43(S2): 252-255.
    [4]
    李红伟,赵雷,石磊,等. HTR-10氦气气轮机电磁轴承系统控制器研究[J]. 核动力工程,2008,29(4): 100-103,116.

    LI Hongwei, ZHAO Lei, SHI Lei, et al. Study on active magnetic bearing controller for HTR-10 helium turbine rotor[J]. Nuclear Power Engineering, 2008, 29(4): 100-103,116.
    [5]
    赵泾雄,杨国军,李悦,等. HTR-10氦风机磁悬浮转子跌落在辅助轴承上的数值分析[J]. 核动力工程,2012,33(3): 61-64,88. doi: 10.3969/j.issn.0258-0926.2012.03.013

    ZHAO Jingxiong, YANG Guojun, LI Yue, et al. Numerical analysis of magnetically suspended rotor in HTR-10 helium circulator being dropped into auxiliary bearings[J]. Nuclear Power Engineering, 2012, 33(3): 61-64,88. doi: 10.3969/j.issn.0258-0926.2012.03.013
    [6]
    杜国伟. 高温气冷堆主氦风机电磁轴承-转子动力学特性研究[D]. 北京:清华大学,2019.
    [7]
    金超武,辛宇,周扬,等. 高温磁悬浮轴承-转子系统建模与动力学分析[J]. 西南交通大学学报,2024,59(4): 746-754,822. doi: 10.3969/j.issn.0258-2724.20230667

    JIN Chaowu, XIN Yu, ZHOU Yang, et al. Modeling and dynamics analysis of high-temperature magnetic bearing-rotor system[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 746-754,822. doi: 10.3969/j.issn.0258-2724.20230667
    [8]
    BELSKII G V, RASTORGUEV A P, LYAMKIN A A. Active magnetic bearing system research[C]//2019 Ⅲ International Conference on Control in Technical Systems (CTS). Petersburg: IEEE, 2019: 132-135.
    [9]
    SAMANTA P, HIRANI H. On the evolution of passive magnetic bearings[J]. Journal of Tribology, 2022, 144(4): 040801.1-040801.19.
    [10]
    SLININGER T S, CHAN W Y, SEVERSON E L, et al. An overview on passive magnetic bearings[C]//2021 IEEE International Electric Machines & Drives Conference (IEMDC). Hartford: IEEE, 2021: 1-8.
    [11]
    金俊杰,王岩峰,徐程程,等. 人工肾脏泵用磁悬浮轴承设计与磁力特性分析[J]. 西南交通大学学报,2024,59(4): 795-803. doi: 10.3969/j.issn.0258-2724.20230090

    JIN Junjie, WANG Yanfeng, XU Chengcheng, et al. Design and magnetic force characteristic analysis of magnetic levitation bearing for artificial kidney pumps[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 795-803. doi: 10.3969/j.issn.0258-2724.20230090
    [12]
    周扬,周瑾,王艺宇,等. 考虑界面接触的磁悬浮轴承-转子系统建模及鲁棒控制[J]. 西南交通大学学报,2024,59(4): 755-765. doi: 10.3969/j.issn.0258-2724.20230510

    ZHOU Yang, ZHOU Jin, WANG Yiyu, et al. Modeling and robust control of magnetic bearing-rotor system considering interface contact[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 755-765. doi: 10.3969/j.issn.0258-2724.20230510
    [13]
    宋春生,尹睿,魏子航,王鹏. 磁悬浮柔性转子系统解耦控制仿真[J]. 西南交通大学学报,2023,58(4): 761-772. doi: 10.3969/j.issn.0258-2724.20220773

    SONG Chunsheng, YIN Rui, WEI Zihang, WANG Peng. Simulation on decoupling control of maglev flexible rotor system[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 761-772. doi: 10.3969/j.issn.0258-2724.20220773
    [14]
    ZHOU J, WU H C, WANG W Y, et al. Online unbalance compensation of a maglev rotor with two active magnetic bearings based on the LMS algorithm and the influence coefficient method[J]. Mechanical Systems and Signal Processing, 2022, 166: 108460.1-108460.22.
    [15]
    TANG J Q, XIANG B, ZHANG Y B. Dynamic characteristics of the rotor in a magnetically suspended control moment gyroscope with active magnetic bearing and passive magnetic bearing[J]. ISA Transactions, 2014, 53(4): 1357-1365. doi: 10.1016/j.isatra.2014.03.009
    [16]
    SAEED N A, KANDIL A. Two different control strategies for 16-pole rotor active magnetic bearings system with constant stiffness coefficients[J]. Applied Mathematical Modelling, 2021, 92: 1-22. doi: 10.1016/j.apm.2020.11.005
    [17]
    XU X P, HAN Q K. A general electromagnetic model and vibration control for shape deviations in PMSM supported by three-pole active magnetic bearings[J]. Mechanical Systems and Signal Processing, 2021, 158: 107710.1-107710.17.
    [18]
    XU Y P, SHEN Q, ZHANG Y, et al. Dynamic modeling of the active magnetic bearing system operating in base motion condition[J]. IEEE Access, 2020, 8: 166003-166013. doi: 10.1109/ACCESS.2020.3022996
    [19]
    巩磊,何派,石勇,等. 主动磁悬浮轴承非奇异快速终端滑模转子位置控制[J]. 西南交通大学学报,2025,60(4): 976-985.

    GONG Lei, HE Pai, SHI Yong, et al. Non-singular fast terminal sliding mode rotor position control of active magnetic bearings[J]. Journal of Southwest Jiaotong University , 2025, 60(4): 976-985.
    [20]
    NAYEK B, DAS A S, DUTT J K. Model based estimation of inertial parameters of a rigid rotor having dynamic unbalance on active magnetic bearings in presence of noise[J]. Applied Mathematical Modelling, 2021, 97: 701-720. doi: 10.1016/j.apm.2021.04.015
    [21]
    翟明达,张博,李晓龙,等. 基于模糊PID控制的准零刚度磁悬浮隔振平台的设计与实现[J]. 西南交通大学学报,2023,58(4): 886-895. doi: 10.3969/j.issn.0258-2724.20220880

    ZHAI Mingda, ZHANG Bo, LI Xiaolong, et al. Design and implementation of magnetic suspension vibration isolation platform with quasi-zero stiffness based on fuzzy PID control[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 886-895. doi: 10.3969/j.issn.0258-2724.20220880
    [22]
    LIU X B, HE T, YAN Y, et al. Effects of axial offset and deflection on load-bearing characteristics of the permanent magnet bearing[J]. Engineering Failure Analysis, 2023, 146: 107123.1-107123.12.
    [23]
    BIAO X, SHUAI W, TAO W, et al. Design, modeling, and validation of a 0.5 kWh flywheel energy storage system using magnetic levitation system[J]. Energy, 2024, 308: 132867.1-132867.16.
    [24]
    DORF R C, BISHOP R H. Modern control systems[M]. [s.l.]: Prentice Hall, 2022.
    [25]
    JIA X Y, XU Y, BAI Y J, et al. Rotor passing through critical speed with assistance of electromagnetic damper[C]//Nuclear Power Plants: Innovative Technologies for Instrumentation and Control Systems. Singapore: Springer, 2022: 301-315.
    [26]
    International Organization for Standardization. Mechanical vibration-balance quality requirements of rigid rotors—part 1: determination of permissible residual unbalance, including marine applications: ISO 1940-1: 2003[S]. Geneva:ISO Publications, 2003.
  • Relative Articles

    [1]JIN Junjie, WANG Yanfeng, XU Chengcheng, LU Wenxuan, ZHANG Xiaoyou, SUN Feng, XU Fangchao. Design and Magnetic Force Characteristic Analysis of Magnetic Levitation Bearing for Artificial Kidney Pumps[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 795-803. doi: 10.3969/j.issn.0258-2724.20230090
    [2]ZHU He, YUAN Ming, GUO Xin. Finite Element Analysis on Layered Mechanical Properties of Carbon Fiber Wires Under Influence of Temperature[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 700-711. doi: 10.3969/j.issn.0258-2724.20210686
    [3]JIN Chaowu, XIN Yu, ZHOU Yang, ZHAO Ruijin, ZHOU Jin, XU Yuanping. Modeling and Dynamics Analysis of High-Temperature Magnetic Bearing-Rotor System[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 746-754, 822. doi: 10.3969/j.issn.0258-2724.20230667
    [4]WEN Yang, LI Zhaojian, YU Jiao. Mechanical Property Analysis of Spherical Joints of Concrete-Filled Steel Tubular Wind Power Towers[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1440-1448. doi: 10.3969/j.issn.0258-2724.20210583
    [5]ZHENG Jing, RAO Shaokai, ZHOU Jun, YANG Dan, SHEN Lixin, HUANG Shuhao. Fracture Analysis and Failure Mechanism of TA3 Limited Contact-Dynamic Compression Plates[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 411-419. doi: 10.3969/j.issn.0258-2724.20190182
    [6]ZHAO Jizhong, XU Xiang, DING Li, KAN Qianhua, KANG Guozheng. Finite Element Analysis of Rolling Strengthening Process for Wheel Tread of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1337-1347. doi: 10.3969/j.issn.0258-2724.20180803
    [7]XU Jiang, YANG Jie, YANG Ji, HUANG Nan, LIU Yaling. Mechanical Properties Analysis of Coronary Stent Based on Medical Images[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 201-208. doi: 10.3969/j.issn.0258-2724.2016.01.028
    [8]SUN Xiaodong, CHEN Long, YANG Zebin, LI Feng, ZHU Huangqiu. Inductance Characteristics of Bearingless Permanent Magnet Synchronous Motor[J]. Journal of Southwest Jiaotong University, 2013, 26(6): 1059-1065. doi: 10.3969/j.issn.0258-2724.2013.06.014
    [9]ZHOU Wen, LIU Xueyi. FEM Simulation of Straightening Tongue Rail of High-Speed Turnout[J]. Journal of Southwest Jiaotong University, 2008, 21(1): 82-85,95.
    [10]LUO Zhen, ZHAI Wanming, YAN Hua, YAO Li. Finite Element Analysis on Stresses in Slab Track Structures on Soil Subgrade[J]. Journal of Southwest Jiaotong University, 2007, 20(6): 711-714,725.
    [11]ZHANG Yuan-hai, LI Qiao. Finite Element Analysis of Shear Lag Effect of Skew Box Girder Bridges[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 64-68.
    [12]LIUAi-rong, PAN Yi-su, ZHOUBen-kuan. Finite Element Analysis for Shape Memory Alloys[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 157-151.
    [13]ZUO De-yuan, CHENDa-peng. Finite Deformation Analysis with Hybrid/Mixed Finite Element Method[J]. Journal of Southwest Jiaotong University, 2001, 14(3): 327-331.
    [14]ZUO De-yuan, ZHENGAn-qi. An Elastic-Plastic Finite Element Analysis on Tunnel Structures at Cycled Temperatures[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 172-175.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-092024-102024-112024-122025-012025-022025-032025-032025-042025-052025-062025-07051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.0 %FULLTEXT: 27.0 %META: 67.6 %META: 67.6 %PDF: 5.4 %PDF: 5.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 54.1 %其他: 54.1 %九江: 2.7 %九江: 2.7 %北京: 2.7 %北京: 2.7 %南京: 2.7 %南京: 2.7 %松原: 2.7 %松原: 2.7 %武汉: 2.7 %武汉: 2.7 %温州: 2.7 %温州: 2.7 %石家庄: 13.5 %石家庄: 13.5 %芒廷维尤: 5.4 %芒廷维尤: 5.4 %西安: 2.7 %西安: 2.7 %诺沃克: 8.1 %诺沃克: 8.1 %其他九江北京南京松原武汉温州石家庄芒廷维尤西安诺沃克

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article views(24) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return