• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 56 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
ZHENG Jing, RAO Shaokai, ZHOU Jun, YANG Dan, SHEN Lixin, HUANG Shuhao. Fracture Analysis and Failure Mechanism of TA3 Limited Contact-Dynamic Compression Plates[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 411-419. doi: 10.3969/j.issn.0258-2724.20190182
Citation: ZHENG Jing, RAO Shaokai, ZHOU Jun, YANG Dan, SHEN Lixin, HUANG Shuhao. Fracture Analysis and Failure Mechanism of TA3 Limited Contact-Dynamic Compression Plates[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 411-419. doi: 10.3969/j.issn.0258-2724.20190182

Fracture Analysis and Failure Mechanism of TA3 Limited Contact-Dynamic Compression Plates

doi: 10.3969/j.issn.0258-2724.20190182
  • Received Date: 19 Mar 2019
  • Rev Recd Date: 09 May 2019
  • Available Online: 13 Oct 2020
  • Publish Date: 15 Apr 2021
  • To investigate the fracture mechanism of TA3 pure titanium limited contact-dynamic compression plates (LC-DCP) during service in the body. 7 clinically fractured TA3 pure titanium LC-DCP were collected and sterilized, and their fracture surfaces were examined using chemical composition analyzer, Vickers hardness tester, optical microscope, and scanning electron microscope. A three-dimensional finite element model of middle femoral transverse fracture treated by TA3 pure titanium LC-DCP was established, and then the fracture healing and bone plate stress were analyzed using ANSYS software. The results show that the physical and chemical properties of the 7 LC-DCP are qualified, fracture occurs around the middle screw hole on the bone plates. Fatigue striations and secondary cracks appear on the fracture surface, and the regions of crack initiation, propagation and transient fracture, have same elemental compositions. For the patients walking prematurely, the maximum shear stress of bone plates occurs at the middle screw hole and it exceeds the yield strength of TA3 pure titanium. In sum, the fracture failure of the TA3 pure titanium LC-DCP in body is mainly resulted from patients walking prematurely, at the condition, cracks are initiated at the middle screw hole on the bone plate surface, and fatigue fracture occurs under the action of complex cyclic loading.

     

  • loading
  • OESTERN H J, TRENTZ O, URANUES S. Bone and joint injuries: trauma surgery Ⅲ[M]. Berlin : Springer, 2014: 265-296.
    谯波,蒋电明. 接骨板材料的研究现状[J]. 重庆医科大学学报,2017,42(2): 62-66.

    QIAO Bo, JIANG Dianming. Research in materials for bone plate[J]. Journal of Chongqing Medical University, 2017, 42(2): 62-66.
    王荣,杨星红. 人体主股骨接骨板断裂失效分析[J]. 腐蚀科学与防护技术,2013,25(6): 504-507.

    WANG Rong, YANG Xinghong. Failure analysis of a fracturd of bone connection plate of TA3 for body’s main femur[J]. Corrosion Science and Protection Technology, 2013, 25(6): 504-507.
    李荣,魏东,许陆,等. 外科植入用TA3钛合金接骨板断裂失效分析[J]. 理化检验(物理分册),2016,52(12): 897-899.

    LI Rong, WEI Dong, XU Lu, et al. Fracture failure analysis of TA3 titanium alloy blade plates for surgical implants[J]. Physical Testing and Chemical Analysis (Part A:Physics Testing), 2016, 52(12): 897-899.
    周梦林. 镁合金接骨板的力学性能与微动磨损特性研究[D]. 成都: 西南交通大学, 2017.
    AZEVEDO C R F, HIPPERT E. Failure analysis of surgical implants in Brazil[J]. Engineering Failure Analysis, 2002, 9(6): 621-633. doi: 10.1016/S1350-6307(02)00026-2
    AZEVEDO C R F. Failure analysis of a commercially pure titanium plate for osteosynthesis[J]. Engineering Failure Analysis, 2003, 10(2): 153-164. doi: 10.1016/S1350-6307(02)00067-5
    GHIBAN B, VARLAN F C, NIVULESCU M, et al. Fractographic evaluation of the metallic materials for medical applications[J]. Key Engineering Materials, 2017, 745(3): 62-74.
    PROVERBIO E, BONACCORSI L M. Microstructural analysis of failure of a stainless steel bone plate implant[J]. Practical Failure Analysis, 2001, 1(4): 33-38. doi: 10.1007/BF02715331
    KANCHANIMAI C, PHIPHOBMONGKOL V, MUANJAN P. Fatigue failure of an orthopedic implant—a locking compression plate[J]. Engineering Failure Analysis, 2008, 15(5): 521-530. doi: 10.1016/j.engfailanal.2007.04.001
    MARCOMINI J B, BAPTISTA C A R P, PASCON J P, et al. Investigation of a fatigue failure in a stainless steel femoral plate[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 38(38): 52-58.
    TAVARES S S M, MAINIER F B, ZIMMERMAN F, et al. Characterization of prematurely failed stainless steel orthopedic implants[J]. Engineering Failure Analysis, 2010, 17(5): 1246-1253. doi: 10.1016/j.engfailanal.2010.02.003
    NIRAJAN T, PRAYSON M, GOSWAMI T. A failure study of a locking compression plate implant[J]. Case Studies in Engineering Failure Analysis, 2015, 3(4): 68-72.
    GERVAIS B, VADEAN A, RAISON M, et al. Failure analysis of a 316L stainless steel femoral orthopedic implant[J]. Case Studies in Engineering Failure Analysis, 2016, 5: 30-38.
    MEHBOOB H, CHANG S H. Application of composites to orthopedic prostheses for effective bone healing:a review[J]. Composite Structures, 2014, 118(1): 328-341.
    KIM S H, CHANG S H, JUNG H J. The finite element analysis of a fractured tibia applied by composite bone plates considering contact conditions and time-varying properties of curing tissues[J]. Composite Structures, 2010, 92(9): 2109-2118. doi: 10.1016/j.compstruct.2009.09.051
    KIM H J, CHANG S H, JUNG H J. The simulation of tissue differentiation at a fracture gap using a mechano-regulation theory dealing with deviatoric strains in the presence of a composite bone plate[J]. Composites Part B, 2012, 43(3): 978-987. doi: 10.1016/j.compositesb.2011.09.011
    KIM H J, KIM S H, CHANG S H. Bio-mechanical analysis of a fractured tibia with composite bone plates according to the diaphyseal oblique fracture angle[J]. Composites Part B, 2011, 42(4): 666-674. doi: 10.1016/j.compositesb.2011.02.009
    HEINTZ S, GUTIERREZ-FAREWIK E M. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach[J]. Gait & Posture, 2007, 26(2): 279-288.
    PERREN S M. Evolution of the internal fixation of long bone fractures[J]. The Journal of Bone and Joint Surgery, 2002, 84(8): 1093-110. doi: 10.1302/0301-620X.84B8.0841093
    GANESH V K, RAMAKRISHNA K, GHISTA D N. Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates[J]. Bio-Medical Engineering Online, 2005, 4(1): 46-60.
    MEHBOOB H, SON D S, CHANG S H. Finite element analysis of tissue differentiation process of a tibia with various fracture configurations when a composite intramedullary rod was applied[J]. Composites Science & Technology, 2013, 80(6): 55-65.
    孙训方, 方孝淑, 关来泰. 材料力学[M]. 北京: 高等教育出版社, 2009: 243-248.
    郑照县. 股骨骨折内固定金属接骨板的生物力学性能研究[D]. 成都: 西南交通大学, 2017.
    GARDNER T N, STOLL T. The influence of mechanical stimulus on the pattern of tissue differentiation in a long bone fracture–an FEM study[J]. Biomechanics, 2000, 33(4): 415-25. doi: 10.1016/S0021-9290(99)00189-X
    PINTO C M S A, ASPRINO L, DE MORAES M. Chemical and structural analyses of titanium plates retrieved from patients[J]. International Journal of Oral & Maxillofacial Surgery, 2015, 44(8): 1005-1009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article views(558) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return