• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
HUANG Hui, YANG Dan, CHEN Ke, JIA Bin. Experiments on Mechanical Performance of Tibetan Rubble Stone Walls Retrofitted with BFRP Grids[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 643-649. doi: 10.3969/j.issn.0258-2724.20180455
Citation: WEN Yang, LI Zhaojian, YU Jiao. Mechanical Property Analysis of Spherical Joints of Concrete-Filled Steel Tubular Wind Power Towers[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1440-1448. doi: 10.3969/j.issn.0258-2724.20210583

Mechanical Property Analysis of Spherical Joints of Concrete-Filled Steel Tubular Wind Power Towers

doi: 10.3969/j.issn.0258-2724.20210583
  • Received Date: 18 Jul 2021
  • Rev Recd Date: 15 Mar 2022
  • Available Online: 29 Jun 2023
  • Publish Date: 21 Apr 2022
  • In order to find a more suitable joint form for the concrete-filled steel tubular (CFST) lattice wind power tower, static tests of models for two flanged spherical branch joints and two flanged bolted spherical joints were carried out, and the finite element analysis was performed. By taking the height and thickness of the table as the changing parameters, the failure modes of the two kinds of joints, the equivalent stress distribution of the flange, and the axial force-deformation curve of the web rod were compared. The research results show that the failure modes of flanged spherical branch joints are shear failure of high-strength bolts, and those of flanged bolted spherical joints are table weld tear failure and buckling-tear failure. Compared with that of the flanged spherical branch joint, the equivalent stress distribution of the flange and the table of the flanged bolted spherical joint is uniform, and the material utilization rate is higher; the absolute values of the maximum stress are increased by 19% and 52%, respectively, and the bearing capacity is strong. The plastic stage of the axial force-deformation curve of the web rod is long, and the ductility is excellent. The change in the height or thickness of the table is more sensitive to the ultimate bearing capacity of the joint, and a higher ultimate bearing capacity is observed. The flanged bolted spherical joint can be promoted and widely applied.

     

  • [1]
    DUAN H B. Emissions and temperature benefits: the role of wind power in China[J]. Environmental Research, 2017, 152: 342-350. doi: 10.1016/j.envres.2016.07.016
    [2]
    张兰娣,张龙君,马轶群,等. 风电高塔架的前景分析[J]. 河北建筑工程学院学报,2018,36(3): 97-99,104.

    ZHANG Landi, ZHANG Longjun, MA Yiqun, et al. An analysis of the prospect of high tower of wind turbine[J]. Journal of Hebei institute of Architecture and Civil Engineering, 2018, 36(3): 97-99,104.
    [3]
    ADAM Z, WOLNIEWICZ K. The impact of supporting tower on wind turbine noise emission[J]. Applied Acoustics, 2019, 155: 260-270.
    [4]
    HUANG X G, LI B K, ZHOU X H, et al. Geometric optimisation analysis of steel-concrete hybrid wind turbine towers[J]. Structures, 2022, 35: 1125-1137. doi: 10.1016/j.istruc.2021.08.036
    [5]
    董崇海. 钢-混凝土组合结构风电塔架力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
    [6]
    刘海锋,朱彬荣,张宏杰,等. 钢管格构式和圆筒式塔架对风力机尾流扰动特性对比研究[J]. 太阳能学报,2019,40(7): 2036-2044.

    LIU Haifeng, ZHU Binrong, ZHANG Hongjie, et al. Comparative study on disturbance properties of tubular latticed and pipe tower on wake of wind turbines[J]. Acta Energiae Solaris Sinica, 2019, 40(7): 2036-2044.
    [7]
    陈娟,聂建国,周成野. 钢管混凝土T形相贯节点应力集中系数研究[J]. 建筑结构学报,2018,39(3): 149-157.

    CHEN Juan, NIE Jianguo, ZHOU Chengye. Study on stress concentration factor of concrete-filled steel tubular T-joints[J]. Journal of Building Structures, 2018, 39(3): 149-157.
    [8]
    高春彦,史治宇,牛丽华,等. 圆钢管混凝土K型焊接管板节点试验研究和有限元分析[J]. 中南大学学报(自然科学版),2017,48(3): 769-778.

    GAO Chunyan, SHI Zhiyu, NIU Lihua. Experimental study and finite element analysis of concrete-filled circular steel tubular K-type welded tube-gusset joints[J]. Journal of Central South University, 2017, 48(3): 769-778.
    [9]
    赵必大,刘成清,章圣冶,等. Y型圆钢管相贯节点轴向刚度计算模型[J]. 西南交通大学学报,2015,50(5): 872-878.

    ZHAO Bida, LIU Chengqing, ZHANG Shengye, et al. Calculation model for axial rigidity of CHS Y-type joints[J]. Journal of Southwest Jiaotong University, 2015, 50(5): 872-878.
    [10]
    宋谦益. 圆钢管混凝土-钢管K形节点的力学性能研究[D]. 北京: 清华大学, 2010.
    [11]
    王鹏,王湛,潘建荣,等. 空间隔板焊接X形圆钢管相贯节点受力性能试验研究[J]. 建筑结构学报,2019,40(3): 221-229.

    WANG Peng, WANG Zhan, PAN Jianrong, et al. Investigation on mechanical behavior of X-shaped welded spatial partition plate tubular joints[J]. Journal of Building Structures, 2019, 40(3): 221-229.
    [12]
    蔡健,王永琦,陈庆军,等. 一种新型单层网壳节点的力学性能研究[J]. 西南交通大学学报,2019,54(1): 145-153.

    CAI Jian, WANG Yongqi, CHEN Qingjun, et al. Research on mechanical behaviours of new joints of single-layer reticulated shells[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 145-153.
    [13]
    MUSA I A, MASHIRI F R. Stress concentration factor in concrete-filled steel tubular K-joints under balanced axial load[J]. Thin-Walled Structures, 2019, 139: 186-195. doi: 10.1016/j.tws.2019.03.003
    [14]
    LI F, DENG H Z, HU X Y. Resistance of gusset-tube DK-joints stiffened by 1/2 annular plates in transmission towers[J]. Journal of Constructional Steel Research, 2019, 159: 560-573. doi: 10.1016/j.jcsr.2019.05.013
    [15]
    李斌,赵振中,程亚超. 钢管混凝土格构式风电塔架节点力学性能对比分析[J]. 重庆理工大学学报(自然科学),2020,34(7): 108-113,175.

    LI Bin, ZHAO Zhengzhong, CHENG Yachao. Comparative analysis of mechanical properties of concrete-filled steel tubular lattice wind turbine tower joints[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(7): 108-113,175.
    [16]
    韩林海. 钢管混凝土结构: 理论与实践[M]. 3版. 北京: 科学出版社, 2016.
  • Relative Articles

    [1]XU Xikun, HONG Yu, XU Jingye, ZHOU Zhida, PU Qianhui, WEN Xuguang. Finite Element Model Updating for Bridges Based on Adaptive Nested Sampling and Bayesian Theory[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230358
    [2]ZHAO Jianhui, CHEN Wenfei, YANG Guichun, CHEN Jingyan. Simulation Research on Coupling Relationship Between Energy Distribution and Dynamic Response of High-Speed Solenoid Valves[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1398-1405. doi: 10.3969/j.issn.0258-2724.20220452
    [3]WANG Zhaonan, ZHANG Yuanhai. Distortion Effect of Single Box Double-Cell Box Girders with Rectangular Cross Section[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1122-1129. doi: 10.3969/j.issn.0258-2724.20200813
    [4]ZHOU Cong, LI Lifeng. Full-Range Analytical Model for Prestressed Concrete Composite Box Girders with Corrugated Steel Webs Under Pure Torsion[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 865-875. doi: 10.3969/j.issn.0258-2724.20200201
    [5]ZHANG Qinghua, HAN Shaohui, JIA Donglin, BU Yizhi. Mechanical Performance of Novel Prefabricated Composite Girder with Top Flange of Ultra Hight Performance Concrete Waffle Deck Panel[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 445-452. doi: 10.3969/j.issn.0258-2724.20170906
    [6]LI Xi, JIA Hongyu, LI Qian, KANG Rui, CHEN Zhiwei. Effect of Pounding on Elastic-Plastic Dynamic Response of High Pier Bridge in Mountainous Area[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 109-118. doi: 10.3969/j.issn.0258-2724.2018.01.014
    [7]HAN Xing, CUI Sheng'ai, CUI Enqi, SU Jiao, ZHU Bing. Earthquake Risk Assessment of Bridge Based on Failure Probability Method[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 696-703. doi: 10.3969/j.issn.0258-2724.2018.04.005
    [8]WU Yanbin, HUANG Fanglin. Refined Finite Element Modeling Methodof Spatial Prestressed Steel Beam[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1082-1087. doi: 10.3969/j.issn.0258-2724.2017.06.007
    [9]JIANG Jun, BO Qian-Hui, GOU Gong-Xie. Model Test for Local Stress Distribution in Anchorage Zones of Continuous Rigid Frame Composite Arch Bridge[J]. Journal of Southwest Jiaotong University, 2011, 24(5): 726-731. doi: 10.3969/j.issn.0258-2724.2011.05.003
    [10]ZHU Yan, LI Xiao-Zhen, QIANG Shi-Zhong. Stochastic Responses of Train-Bridge Coupling System for Simply-Supported High-Speed Railway Bridge[J]. Journal of Southwest Jiaotong University, 2011, 24(4): 535-540. doi: 10.3969/j.issn.0258-2724.2011.04.002
    [11]FU Chun-Yu, CHAN De-Shan, LI Jiao. Damage Location Identification of Railway Bridge Based on Vibration Response Caused by Vehicles[J]. Journal of Southwest Jiaotong University, 2011, 24(5): 719-726. doi: 10.3969/j.issn.0258-2724.2011.05.002
    [12]GUO Shi-Wei-, Lin-Jian-Hui, . M ixed FEM ofB-SplineW avelet on Interval for Beam Structures[J]. Journal of Southwest Jiaotong University, 2010, 23(1): 17-22. doi: 10. 3969/.j issn. 0258-2724. 2
    [13]FU Chunyu, LI Qiao. Torsion Analysis of Horizontal Curved Box Girder under Temperature Difference[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 710-715.
    [14]WANG Jialin. Bandwidth Optimization Algorithm of Finite Element Models at Level of Degree of Freedom[J]. Journal of Southwest Jiaotong University, 2009, 22(2): 186-189.
    [15]ZHANG Yuan-hai, LI Qiao. Finite Element Analysis of Shear Lag Effect of Skew Box Girder Bridges[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 64-68.
  • Cited by

    Periodical cited type(8)

    1. 袁观富,李一诺. 基于模糊层次分析的再生粗骨料综合分级方法. 建材世界. 2024(04): 19-22+33 .
    2. 张玉栋,谢龙,张富钧,张佳帅,曹颖卓,高玉增. 二次再生混凝土力学性能研究. 混凝土. 2024(07): 15-18+27 .
    3. 谢祥兵,包梦,李广慧,史科,李晗. 基于改进灰熵关联分析的混合型再生粗骨料评价指标及分级研究. 硅酸盐通报. 2022(01): 354-362 .
    4. 薛翠真,朱翔琛. 建筑垃圾砖粉颗粒特征对胶凝材料体系密实填充效应的影响. 材料科学与工程学报. 2022(03): 455-459 .
    5. 陈青青. 水玻璃改性建筑垃圾骨料混凝土的力学性能研究. 混凝土. 2022(07): 99-102+106 .
    6. 陆建宏. 再生混凝土的制备及耐久性分析. 实验室研究与探索. 2021(05): 45-47+52 .
    7. 崔鹏. RCA强度对再生混凝土力学及变形的影响. 甘肃科技. 2021(17): 111-114 .
    8. 万炳彤,鲍学英,李爱春. 再生混凝土细骨料质量等级评价研究. 硅酸盐通报. 2019(09): 2758-2764 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 50.2 %FULLTEXT: 50.2 %META: 44.4 %META: 44.4 %PDF: 5.4 %PDF: 5.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.6 %其他: 9.6 %[]: 1.0 %[]: 1.0 %上海: 2.2 %上海: 2.2 %上海市: 0.2 %上海市: 0.2 %东莞: 0.8 %东莞: 0.8 %中国: 0.2 %中国: 0.2 %临汾: 0.4 %临汾: 0.4 %兰州: 1.0 %兰州: 1.0 %北京: 3.6 %北京: 3.6 %南京: 0.4 %南京: 0.4 %南通: 0.4 %南通: 0.4 %合肥市: 0.2 %合肥市: 0.2 %哈尔滨: 0.4 %哈尔滨: 0.4 %哥伦布: 0.6 %哥伦布: 0.6 %唐山: 0.4 %唐山: 0.4 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 1.8 %天津: 1.8 %宁波: 1.0 %宁波: 1.0 %宜昌: 0.2 %宜昌: 0.2 %广州: 0.6 %广州: 0.6 %张家口: 2.6 %张家口: 2.6 %徐州: 0.2 %徐州: 0.2 %成都: 2.8 %成都: 2.8 %成都市: 0.2 %成都市: 0.2 %朝阳: 0.4 %朝阳: 0.4 %杭州: 1.4 %杭州: 1.4 %池州: 2.0 %池州: 2.0 %沈阳: 0.4 %沈阳: 0.4 %泰州: 0.8 %泰州: 0.8 %洛阳: 0.4 %洛阳: 0.4 %济南: 0.4 %济南: 0.4 %深圳: 0.4 %深圳: 0.4 %温州: 0.2 %温州: 0.2 %漯河: 0.6 %漯河: 0.6 %石家庄: 1.2 %石家庄: 1.2 %福州: 0.2 %福州: 0.2 %芒廷维尤: 9.6 %芒廷维尤: 9.6 %芝加哥: 0.8 %芝加哥: 0.8 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.4 %衢州: 0.4 %西宁: 41.0 %西宁: 41.0 %西安: 0.4 %西安: 0.4 %贵阳: 0.2 %贵阳: 0.2 %郑州: 1.4 %郑州: 1.4 %重庆: 1.6 %重庆: 1.6 %长沙: 3.2 %长沙: 3.2 %随州: 0.4 %随州: 0.4 %青岛: 1.0 %青岛: 1.0 %黔南: 0.4 %黔南: 0.4 %黔西南: 0.2 %黔西南: 0.2 %其他[]上海上海市东莞中国临汾兰州北京南京南通合肥市哈尔滨哥伦布唐山嘉兴天津宁波宜昌广州张家口徐州成都成都市朝阳杭州池州沈阳泰州洛阳济南深圳温州漯河石家庄福州芒廷维尤芝加哥衡阳衢州西宁西安贵阳郑州重庆长沙随州青岛黔南黔西南

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article views(350) PDF downloads(39) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return