• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 29 Issue 1
Jan.  2016
Turn off MathJax
Article Contents
XU Jiang, YANG Jie, YANG Ji, HUANG Nan, LIU Yaling. Mechanical Properties Analysis of Coronary Stent Based on Medical Images[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 201-208. doi: 10.3969/j.issn.0258-2724.2016.01.028
Citation: XU Jiang, YANG Jie, YANG Ji, HUANG Nan, LIU Yaling. Mechanical Properties Analysis of Coronary Stent Based on Medical Images[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 201-208. doi: 10.3969/j.issn.0258-2724.2016.01.028

Mechanical Properties Analysis of Coronary Stent Based on Medical Images

doi: 10.3969/j.issn.0258-2724.2016.01.028
  • Received Date: 01 Mar 2013
  • Publish Date: 25 Jan 2016
  • In order to find a simple method to build the coronary artery stenosis model based on medical images, a simplified narrow coronary artery-stent coupling finite element (FE) model based on CT images was built using the feature contour extraction method. The mechanical properties of the stent in an ideal coronary artery stenosis was then studied using the CT-based FE model in comparison with the ideal simplified artery FE model. In addition, some clinical study results were used to verify the rationality of the two models. The results show that some differences in mechanical properties existed between the two models, such as the stress distribution, expansion stiffness, recoil rate, dog bone rate, and the mean area of blood vessel. For the CT-based model, the mean stress of vessel was 1.22 MPa and the minimal area of vessel after stent implantation was 6.1 mm2, while they were 1.54 MPa and 5.1 mm2, respectively, in the ideal simplified model. The results obtained by the CT-based simplified model was more close to the clinical results than the ideal simplified model.

     

  • loading
  • GARG S, SERRYS P W. Coronary stents current status[J]. Journal of the American College of Cardiology, 2010, 56(1): 1-41.
    KUTRYK M J B, ONG A T L. Drug therapy: coronary-artery stents[J]. The New England Journal of Medicine, 2006, 354(1): 483-495.
    SANGIORGI G, MELZI G, AGODTONI P, et al. Engineering aspects of stents design and their translation into clinical practice[J]. Annali Dellistituto Superiore Di Sanita, 2007, 43(1): 89-100.
    ETAVE F, FINET G, BOIVIN M, et al. Mechanical properties of coronary stents determined by using finite element analysis[J]. Journal of Biomechanics, 2001, 34(1): 1065-1075.
    李建军,罗七一,谢志勇,等. 冠脉支架的疲劳寿命的有限元分析[J]. 医用生物力学,2010,25(1): 68-73. LI Jianjun, LUO Qiyi, XIE Zhiyong, et al. Fatigue life analysis of coronary stent by finite element analysis[J]. Journal of Medical Biomachanics, 2010, 25(1): 68-73.
    李红霞,张艺浩,王希诚. 基于有限元模拟的支架扩张、血流动力学及支架疲劳分析[J]. 医用生物力学,2012,27(2): 178-185. LI Hongxia, ZHANG Yihao, WANG Xicheng. Analysis of stent expansion, blood flow and fatigue life based on finite element method[J]. Journal of Medical Biomechanics, 2012, 27(2): 178-185.
    杨杰,黄楠,杜全兴. 血管支架随机失稳扩展均匀性问题的模型和应用[J]. 力学学报,2008,40(1): 79-85. YANG Jie, HUANG Nan, DU Quanxing. Model and applicaiton of uniformity expansion in randomized structure of intravascular stent[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 79-85.
    GERVASO F, CAPELLI C, PETRINI L, et al. On the effects of different strategies in modeling balloon-expandable stenting by means of finite element method[J]. Journal of Biomechanics, 2008, 41(1): 1206-1212.
    BEULE M D, MORTIER P, CARLIER S G, et al. Realistic finite element-based stent design: the impact of balloon folding[J]. Journal of Biomechanics, 2008, 41(1): 383-389.
    YANG Jie, HUANG Nan, DU Quanxing. A non-uniform expansion mechanical safety model of the stent[J]. Journal of Medical Engineering Technology, 2009, 33(1): 525-531.
    LALLY C, DOLAN F, PRENDERGAST P J. Cardiovascular stent design and vessel stress: a finite element analysis[J]. Journal of Biomechanics, 2005, 38(1): 1574-1581.
    MORTIER P, HOLZAPFEL G A, BEULE M, et al. A novel simulation strategy for stent insertion and deployment in curved coronary bifurcation: comparison of three drug-eluting stents[J]. Annals of Biomedical Engineering, 2010, 38(1): 88-99.
    ZAHEDMANESH H, JOHN K D, LALLY C. Simulation of a balloon expandable stent in a realistic coronary artery-determination of the optimum modelling strategy[J]. Journal of Biomechanics, 2010, 43(11): 2126-2132.
    KIOUSIS D E, GASSER T C, HOLZAPFEL G A. A numerical model to study the interaction of vascular stents with human atherosclerotic lesions[J]. Annals of Biomedical Engineering, 2007, 35(11): 1857-1869.
    KIOUSIS D E, GASSER T C, HOLZAPFEL G A. Smooth contact strategies with emphasis on the modeling of balloon angioplasty with stenting[J]. Int. J. Numer. Meth. Engng, 2008, 75(1): 826-855.
    CHAN A H, CHAN R C, SHISHKOV M, et al. Mechanical analysis of atherosclerotic plaques based on optical coherence tomography[J]. Annals of Biomedical Engineering, 2004, 32(11): 1494-1503.
    GASSER T C, OGDEN R W, HOLZAPFEL G A. Hyperelastic modeling of arterial layers with distributed collagen fiber orientations[J]. Journal of the Royal Society Interface, 2006, 3(1): 15-35.
    GASTALDI D, MORLACCHI S, NICHETTI R, et al. Modelling of the provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: effects of stent positioning[J]. Journal of Biomechanics and Modeling in Mechanobiology, 2010, 9(5): 551-561.
    HOFFMANN R, SMINTZ G, DUSSAILLANT G R, et al. Patterns and mechanisms of in-stent restenosis: a serial intravascular ultrasound study[J]. Circulation, 1996, 94(1): 1247-1254.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(831) PDF downloads(331) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return