• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
TIAN Mingxing, LI Jin, Gao Yuan, LIU Yibin, MIN Yongzhi. Decoupling Operation Mode of Controllable Reactor of Transformer Type[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 620-627. doi: 10.3969/j.issn.0258-2724.2018.03.025
Citation: XU Jiang, YANG Jie, YANG Ji, HUANG Nan, LIU Yaling. Mechanical Properties Analysis of Coronary Stent Based on Medical Images[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 201-208. doi: 10.3969/j.issn.0258-2724.2016.01.028

Mechanical Properties Analysis of Coronary Stent Based on Medical Images

doi: 10.3969/j.issn.0258-2724.2016.01.028
  • Received Date: 01 Mar 2013
  • Publish Date: 25 Jan 2016
  • In order to find a simple method to build the coronary artery stenosis model based on medical images, a simplified narrow coronary artery-stent coupling finite element (FE) model based on CT images was built using the feature contour extraction method. The mechanical properties of the stent in an ideal coronary artery stenosis was then studied using the CT-based FE model in comparison with the ideal simplified artery FE model. In addition, some clinical study results were used to verify the rationality of the two models. The results show that some differences in mechanical properties existed between the two models, such as the stress distribution, expansion stiffness, recoil rate, dog bone rate, and the mean area of blood vessel. For the CT-based model, the mean stress of vessel was 1.22 MPa and the minimal area of vessel after stent implantation was 6.1 mm2, while they were 1.54 MPa and 5.1 mm2, respectively, in the ideal simplified model. The results obtained by the CT-based simplified model was more close to the clinical results than the ideal simplified model.

     

  • 致谢: 本文的研究工作得到兰州交通大学优秀科研团队项目(201701)的资助.
  • GARG S, SERRYS P W. Coronary stents current status[J]. Journal of the American College of Cardiology, 2010, 56(1): 1-41.
    KUTRYK M J B, ONG A T L. Drug therapy: coronary-artery stents[J]. The New England Journal of Medicine, 2006, 354(1): 483-495.
    SANGIORGI G, MELZI G, AGODTONI P, et al. Engineering aspects of stents design and their translation into clinical practice[J]. Annali Dellistituto Superiore Di Sanita, 2007, 43(1): 89-100.
    ETAVE F, FINET G, BOIVIN M, et al. Mechanical properties of coronary stents determined by using finite element analysis[J]. Journal of Biomechanics, 2001, 34(1): 1065-1075.
    李建军,罗七一,谢志勇,等. 冠脉支架的疲劳寿命的有限元分析[J]. 医用生物力学,2010,25(1): 68-73. LI Jianjun, LUO Qiyi, XIE Zhiyong, et al. Fatigue life analysis of coronary stent by finite element analysis[J]. Journal of Medical Biomachanics, 2010, 25(1): 68-73.
    李红霞,张艺浩,王希诚. 基于有限元模拟的支架扩张、血流动力学及支架疲劳分析[J]. 医用生物力学,2012,27(2): 178-185. LI Hongxia, ZHANG Yihao, WANG Xicheng. Analysis of stent expansion, blood flow and fatigue life based on finite element method[J]. Journal of Medical Biomechanics, 2012, 27(2): 178-185.
    杨杰,黄楠,杜全兴. 血管支架随机失稳扩展均匀性问题的模型和应用[J]. 力学学报,2008,40(1): 79-85. YANG Jie, HUANG Nan, DU Quanxing. Model and applicaiton of uniformity expansion in randomized structure of intravascular stent[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 79-85.
    GERVASO F, CAPELLI C, PETRINI L, et al. On the effects of different strategies in modeling balloon-expandable stenting by means of finite element method[J]. Journal of Biomechanics, 2008, 41(1): 1206-1212.
    BEULE M D, MORTIER P, CARLIER S G, et al. Realistic finite element-based stent design: the impact of balloon folding[J]. Journal of Biomechanics, 2008, 41(1): 383-389.
    YANG Jie, HUANG Nan, DU Quanxing. A non-uniform expansion mechanical safety model of the stent[J]. Journal of Medical Engineering Technology, 2009, 33(1): 525-531.
    LALLY C, DOLAN F, PRENDERGAST P J. Cardiovascular stent design and vessel stress: a finite element analysis[J]. Journal of Biomechanics, 2005, 38(1): 1574-1581.
    MORTIER P, HOLZAPFEL G A, BEULE M, et al. A novel simulation strategy for stent insertion and deployment in curved coronary bifurcation: comparison of three drug-eluting stents[J]. Annals of Biomedical Engineering, 2010, 38(1): 88-99.
    ZAHEDMANESH H, JOHN K D, LALLY C. Simulation of a balloon expandable stent in a realistic coronary artery-determination of the optimum modelling strategy[J]. Journal of Biomechanics, 2010, 43(11): 2126-2132.
    KIOUSIS D E, GASSER T C, HOLZAPFEL G A. A numerical model to study the interaction of vascular stents with human atherosclerotic lesions[J]. Annals of Biomedical Engineering, 2007, 35(11): 1857-1869.
    KIOUSIS D E, GASSER T C, HOLZAPFEL G A. Smooth contact strategies with emphasis on the modeling of balloon angioplasty with stenting[J]. Int. J. Numer. Meth. Engng, 2008, 75(1): 826-855.
    CHAN A H, CHAN R C, SHISHKOV M, et al. Mechanical analysis of atherosclerotic plaques based on optical coherence tomography[J]. Annals of Biomedical Engineering, 2004, 32(11): 1494-1503.
    GASSER T C, OGDEN R W, HOLZAPFEL G A. Hyperelastic modeling of arterial layers with distributed collagen fiber orientations[J]. Journal of the Royal Society Interface, 2006, 3(1): 15-35.
    GASTALDI D, MORLACCHI S, NICHETTI R, et al. Modelling of the provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: effects of stent positioning[J]. Journal of Biomechanics and Modeling in Mechanobiology, 2010, 9(5): 551-561.
    HOFFMANN R, SMINTZ G, DUSSAILLANT G R, et al. Patterns and mechanisms of in-stent restenosis: a serial intravascular ultrasound study[J]. Circulation, 1996, 94(1): 1247-1254.
  • Relative Articles

    [1]ZHENG Jing, RAO Shaokai, ZHOU Jun, YANG Dan, SHEN Lixin, HUANG Shuhao. Fracture Analysis and Failure Mechanism of TA3 Limited Contact-Dynamic Compression Plates[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 411-419. doi: 10.3969/j.issn.0258-2724.20190182
    [2]ZHAO Jizhong, XU Xiang, DING Li, KAN Qianhua, KANG Guozheng. Finite Element Analysis of Rolling Strengthening Process for Wheel Tread of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1337-1347. doi: 10.3969/j.issn.0258-2724.20180803
    [3]ZHOU Wen, LIU Xueyi. FEM Simulation of Straightening Tongue Rail of High-Speed Turnout[J]. Journal of Southwest Jiaotong University, 2008, 21(1): 82-85,95.
    [4]LUO Zhen, ZHAI Wanming, YAN Hua, YAO Li. Finite Element Analysis on Stresses in Slab Track Structures on Soil Subgrade[J]. Journal of Southwest Jiaotong University, 2007, 20(6): 711-714,725.
    [5]ZHANG Yuan-hai, LI Qiao. Finite Element Analysis of Shear Lag Effect of Skew Box Girder Bridges[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 64-68.
    [6]YANG Rong-shan. Finite Element Analysis of Stress in Rail Joint[J]. Journal of Southwest Jiaotong University, 2003, 16(3): 314-317.
    [7]LIUAi-rong, PAN Yi-su, ZHOUBen-kuan. Finite Element Analysis for Shape Memory Alloys[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 157-151.
    [8]ZUO De-yuan, CHENDa-peng. Finite Deformation Analysis with Hybrid/Mixed Finite Element Method[J]. Journal of Southwest Jiaotong University, 2001, 14(3): 327-331.
    [9]ZUO De-yuan, ZHENGAn-qi. An Elastic-Plastic Finite Element Analysis on Tunnel Structures at Cycled Temperatures[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 172-175.
    [10]PAN Yi-su, CHEN Da-peng. Finite Element Analysis of Nonlinear Fracture for Piezoelectric Ceramics[J]. Journal of Southwest Jiaotong University, 2000, 13(5): 451-456.
  • Cited by

    Periodical cited type(1)

    1. 李婧,彭坤,崔新阳,付文宇,乔爱科. 位姿对支架虚拟释放结果影响的数值模拟研究. 生物医学工程学杂志. 2018(02): 214-218+228 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 36.1 %FULLTEXT: 36.1 %META: 63.9 %META: 63.9 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.9 %其他: 6.9 %北京: 3.2 %北京: 3.2 %十堰: 0.5 %十堰: 0.5 %南通: 0.5 %南通: 0.5 %哥伦布: 0.5 %哥伦布: 0.5 %张家口: 3.7 %张家口: 3.7 %成都: 0.5 %成都: 0.5 %扬州: 0.5 %扬州: 0.5 %杭州: 1.4 %杭州: 1.4 %武汉: 0.5 %武汉: 0.5 %池州: 0.9 %池州: 0.9 %芒廷维尤: 8.8 %芒廷维尤: 8.8 %西宁: 68.1 %西宁: 68.1 %贵阳: 0.9 %贵阳: 0.9 %郑州: 0.9 %郑州: 0.9 %长沙: 1.4 %长沙: 1.4 %青岛: 0.9 %青岛: 0.9 %其他北京十堰南通哥伦布张家口成都扬州杭州武汉池州芒廷维尤西宁贵阳郑州长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(874) PDF downloads(331) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return