• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
XIAO Ling, ZHAO Chenxi, DOU Jingwei, CHENG Wenjie, ZHENG Shandong. Research on Dynamic Characteristics and Control of Axial-Radial Hybrid Magnetic Bearing[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 640-647, 656. doi: 10.3969/j.issn.0258-2724.20210883
Citation: XIAO Ling, ZHAO Chenxi, DOU Jingwei, CHENG Wenjie, ZHENG Shandong. Research on Dynamic Characteristics and Control of Axial-Radial Hybrid Magnetic Bearing[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 640-647, 656. doi: 10.3969/j.issn.0258-2724.20210883

Research on Dynamic Characteristics and Control of Axial-Radial Hybrid Magnetic Bearing

doi: 10.3969/j.issn.0258-2724.20210883
  • Received Date: 16 Nov 2021
  • Rev Recd Date: 02 Mar 2022
  • Publish Date: 11 Mar 2022
  • In order to reduce the eddy current loss and increase the axial magnetic force for three degrees of freedom axial-radial hybrid magnetic bearings (ARHMB), a thrust bearing made of soft magnetic composite materials (SMCs) in the axial direction was proposed. The Halbach array was introduced at the air gap between the thrust plate and the rotor to enhance the magnetic density of the axial air gap. In the radial direction, the laminated structure was used for the radial bearing. Firstly, based on the dynamic magnetic flux distribution and the equivalent magnetic circuit method, the equivalent reluctance model considering eddy current, magnetic leakage and cross-coupling effects was established. Then, the influence of material types and cross-coupling effect on the equivalent reluctance frequency response and dynamic stiffness was analyzed. Finally, ARHMB was studied by incomplete derivative PID control considering the effect of eddy current, magnetic leakage and cross-coupling. The results show that ARHMB prepared by SMCs can provide greater and more stable magnetic force and larger bandwidth than that made of carbon steel, and has better dynamic characteristics under high-frequency conditions. When considering the cross-coupling effect, the dynamic characteristics of ARHMB made of SMCs have a large change rate at high frequency and cannot be ignored. For low-bandwidth carbon steel bearings, the cross-coupling effect is not obvious. The system of magnetic bearing has a fast response speed, small overshoot, and approximately zero steady-state error, which has good control characteristics.

     

  • [1]
    崔恒斌,周瑾,董继勇,等. 磁悬浮旋转机械振动稳定性实例研究[J]. 浙江大学学报(工学版),2018,52(4): 635-640,686. doi: 10.3785/j.issn.1008-973X.2018.04.004

    CUI Hengbin, ZHOU Jin, DONG Jiyong, et al. Case study on vibration stability of rotating machinery equipped with active magnetic bearings[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(4): 635-640,686. doi: 10.3785/j.issn.1008-973X.2018.04.004
    [2]
    林子豪,胡业发,冉少林,等. 3自由度混合磁轴承支承特性及仿真分析[J]. 机械设计与研究,2019,35(5): 32-35,40.

    LIN Zihao, HU Yefa, RAN Shaolin, et al. Simulation study on supporting characteristics of three-DOF hybrid magnetic bearings[J]. Machine Design & Research, 2019, 35(5): 32-35,40.
    [3]
    ZHONG Y L, WU L J, HUANG X Y, et al. Modeling and design of a 3-DOF magnetic bearing with toroidal radial control coils[J]. IEEE Transactions on Magnetics, 2019, 55(7): 1-7.
    [4]
    XIAO L, HE X W, CHENG W J, et al. Structural optimization and dynamic characteristics of the new type 3-degrees of freedom axial and radial hybrid magnetic bearing[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021: 09544062211052826.1- 09544062211052826.14.
    [5]
    LE Y, WANG K. Design and optimization method of magnetic bearing for high-speed motor considering eddy current effects[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(4): 2061-2072. doi: 10.1109/TMECH.2016.2569822
    [6]
    REN X J, LE Y, SUN J J, et al. Magnetic flux leakage modelling and optimisation of a CRAHMB for DC motor[J]. IET Electric Power Applications, 2017, 11(2): 212-221. doi: 10.1049/iet-epa.2016.0259
    [7]
    REN X, FENG M,CHEN S,et al. The cross-coupling problem caused by the structure of a combined radial-axial magnetic bearing for DC motors[J]. International Journal of Applied Electromagnetics and Mechanics, 2020, 62(1): 173-189.
    [8]
    ZHONG Y L, WU L J, FANG Y T, et al. Investigation of cross-coupling effect and its restraining methods of a 3-DOF hybrid magnetic bearing[J]. COMPEL:the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2018, 37(6): 2195-2210. doi: 10.1108/COMPEL-01-2018-0037
    [9]
    FENG S, AN Y, WANG Z X, et al. Preparation and magnetic properties of Fe@SiO2 Soft magnetic composites[J]. Materials Science Forum, 2020, 993: 638-645. doi: 10.4028/www.scientific.net/MSF.993.638
    [10]
    XIAO L, HOU T Y, LI M, et al. Dynamic performances of a magnetic thrust bearing based on new soft magnetic composites[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(10): 3388-3399. doi: 10.1177/0954406218813587
    [11]
    HAN B C, XU Q J, ZHENG S Q. Integrated radial/thrust magnetic bearing without thrust disk for a high-speed driving system[J]. IET Electric Power Applications, 2016, 10(4): 276-283. doi: 10.1049/iet-epa.2015.0335
    [12]
    ZHU L. Non-laminated magnetic actuators: Modeling and performance limitations[D]. Virginia: University of Virginia, 2005
    [13]
    邴守东,李国林. 不完全微分PID控制算法研究与仿真实验[J]. 电子工业专用设备,2013,42(1): 46-50. doi: 10.3969/j.issn.1004-4507.2013.01.011

    BING Shoudong, LI Guolin. Incomplete derivative PID control algorithm and simulation experiment[J]. Equipment for Electronic Products Manufacturing, 2013, 42(1): 46-50. doi: 10.3969/j.issn.1004-4507.2013.01.011
    [14]
    王忠博. 主动电磁轴承-刚性转子系统振动主动控制[D]. 杭州: 浙江大学, 2018.
    [15]
    LIN F J, HUANG M S, CHEN S Y. Intelligent double integral sliding-mode control for five-degree-of-freedom active magnetic bearing system[J]. IET Control Theory & Applications, 2011, 5(11): 1287-1303.
    [16]
    LIU C, LIU G. Equivalent damping control of radial twist motion for permanent magnetic bearings based on radial position variation[J]. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6417-6427. doi: 10.1109/TIE.2015.2416681
  • Relative Articles

    [1]LIU Xin, YUAN Pengyu. Modeling and Simulation of a Novel Heteropolar Radial Hybrid Magnetic Bearing[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 944-953. doi: 10.3969/j.issn.0258-2724.20230315
    [2]DUAN Zhenyun, LIU Yang, SUN Feng, SHI Ce, XU Fangchao, JIN Junjie, ZHANG Xiaoyou, CHEN Xi. Research on Fuzzy Proportional Integral Differential Control of Magnetic Drive Oil-free Scroll Compressor[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 1013-1023. doi: 10.3969/j.issn.0258-2724.20240600
    [3]GONG Lei, HE Pai, SHI Yong, ZHU Changsheng. Non-Singular Fast Terminal Sliding Mode Rotor Position Control of Active Magnetic Bearings[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 976-985. doi: 10.3969/j.issn.0258-2724.20240090
    [4]JIANG Hao, SU Zhenzhong, JIANG Yapeng. Optimized Design of High-Load Capacity Magnetic Bearings[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 965-975, 985. doi: 10.3969/j.issn.0258-2724.20240553
    [5]XIAO Ling, LI Yuanchao, ZHAO Chenxi, CHENG Wenjie, FENG Sheng. Quantitative Research on Misalignment Magnitude of Rotor-Magnetic Bearing System with Axis Misalignment Under Shock Excitation[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 737-745. doi: 10.3969/j.issn.0258-2724.20230454
    [6]ZHOU Yang, ZHOU Jin, WANG Yiyu, ZHANG Yue, XU Yuanping. Modeling and Robust Control of Magnetic Bearing-Rotor System Considering Interface Contact[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 755-765. doi: 10.3969/j.issn.0258-2724.20230510
    [7]JIN Junjie, WANG Yanfeng, XU Chengcheng, LU Wenxuan, ZHANG Xiaoyou, SUN Feng, XU Fangchao. Design and Magnetic Force Characteristic Analysis of Magnetic Levitation Bearing for Artificial Kidney Pumps[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 795-803. doi: 10.3969/j.issn.0258-2724.20230090
    [8]XIAO Ling, ZHOU You, ZHAO Chenxi, ZHENG Shandong, CHENG Wenjie, FENG Sheng. Vibration Reduction of Bearing-Rotor with Electromagnetic Damper Considering Dynamic Stiffness[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 957-964. doi: 10.3969/j.issn.0258-2724.20230065
    [9]SUN Feng, PEI Wenzhe, JIN Junjie, ZHAO Chuan, XU Fangchao, ZHANG Ming. Floating Control Method for Permanent Magnetic Levitation Platform with Variable Flux Path[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 531-539. doi: 10.3969/j.issn.0258-2724.20210964
    [10]SUN Yougang, XU Junqi, HE Zhenyu, LI Fengxing, CHEN Chen, LIN Guobin. Sliding Mode Cooperative Control of Multi-Electromagnet Suspension System Based on Error Cross Coupling[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 558-565. doi: 10.3969/j.issn.0258-2724.20210924
    [11]HU Yusheng, LI Liyi, GUO Weilin, LI Xin. Support Stiffness of Magnetic Bearing Based on Unequal Magnetic Circuit Area Design Method[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 648-656. doi: 10.3969/j.issn.0258-2724.20210888
    [12]JU Jintao, XU Peng, ZHU Huangqiu, XU Tong, WANG Xiangfei, JU Fangming, DU Jiahui. Core Loss Analysis of Three Degree-of-Freedom Hybrid Magnetic Bearing with Novel Rotor Structure[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 675-681. doi: 10.3969/j.issn.0258-2724.20210903
    [13]LI Songqi, LUO Cheng, ZHANG Kunlun. Correction of Magnetic Force of Hybrid Electromagnet Based on Magnetic Flux Leakage Compensation[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 604-609. doi: 10.3969/j.issn.0258-2724.20210843
    [14]TIAN Mingxing, FU Pengyu, LI Ninghao. Magnetically Integrated Structure for Transformer-Type Controllable Reactors: Magnetic Circuit and Circuit Analysis[J]. Journal of Southwest Jiaotong University, 2017, 30(4): 774-781. doi: 10.3969/j.issn.0258-2724.2017.04.016
    [15]JIANG Qilong, HU Zhenqiu. Improved Incomplete Derivative PID Control of Axial Active Magnetic Bearing[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 241-246. doi: 10.3969/j.issn.0258-2724.2015.02.006
    [16]JIANG Guanlu, KONG Xianghui, MENG Liji, WANG Zhimeng. Dynamic Characteristics of Soil Subgrade Bed for Ballastless Track[J]. Journal of Southwest Jiaotong University, 2010, 23(6): 855-862. doi: 10.3969/j.issn.0258-2724.2010.06.006
    [17]XU Yan-shen, ZHANG Xue-ling. Optimum Design of Static and Dynamic Properties of Mechanical Structure Based on FEM[J]. Journal of Southwest Jiaotong University, 2003, 16(5): 517-520.
    [18]YUJian-hua, WEI Yong-tao, CAOJian-mian. Dynamic Behavior of Structure-Liquid System of Hydraulic Turbines[J]. Journal of Southwest Jiaotong University, 2001, 14(3): 258-263.
  • Cited by

    Periodical cited type(1)

    1. 肖玲,周游,赵晨曦,郑善栋,程文杰,冯圣. 考虑动态刚度的电磁阻尼器-轴承-转子减振研究. 西南交通大学学报. 2023(04): 957-964 . 本站查看

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-092024-102024-112024-122025-012025-022025-032025-032025-042025-052025-062025-07010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 34.8 %FULLTEXT: 34.8 %META: 58.2 %META: 58.2 %PDF: 7.0 %PDF: 7.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.5 %其他: 11.5 %其他: 0.2 %其他: 0.2 %Falkenstein: 0.2 %Falkenstein: 0.2 %Saitama: 0.3 %Saitama: 0.3 %上海: 1.1 %上海: 1.1 %东莞: 0.5 %东莞: 0.5 %临汾: 0.1 %临汾: 0.1 %北京: 2.3 %北京: 2.3 %十堰: 0.7 %十堰: 0.7 %华盛顿州: 0.1 %华盛顿州: 0.1 %南京: 0.2 %南京: 0.2 %南昌: 0.2 %南昌: 0.2 %南通: 0.1 %南通: 0.1 %台北: 0.2 %台北: 0.2 %台州: 0.1 %台州: 0.1 %合肥: 0.1 %合肥: 0.1 %咸阳: 0.2 %咸阳: 0.2 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %唐山: 0.3 %唐山: 0.3 %嘉兴: 0.1 %嘉兴: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.7 %天津: 0.7 %太原: 0.1 %太原: 0.1 %宁波: 0.1 %宁波: 0.1 %宜春: 0.2 %宜春: 0.2 %宣城: 1.1 %宣城: 1.1 %山景城: 0.3 %山景城: 0.3 %广州: 1.3 %广州: 1.3 %张家口: 4.3 %张家口: 4.3 %德阳: 0.1 %德阳: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 1.0 %成都: 1.0 %扬州: 1.8 %扬州: 1.8 %揭阳: 0.1 %揭阳: 0.1 %无锡: 0.2 %无锡: 0.2 %昆明: 0.2 %昆明: 0.2 %景德镇: 0.1 %景德镇: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.6 %杭州: 1.6 %武汉: 0.4 %武汉: 0.4 %池州: 0.7 %池州: 0.7 %沈阳: 1.2 %沈阳: 1.2 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %淮安: 0.1 %淮安: 0.1 %深圳: 1.5 %深圳: 1.5 %清远: 0.3 %清远: 0.3 %温州: 0.8 %温州: 0.8 %湖州: 0.4 %湖州: 0.4 %滁州: 0.1 %滁州: 0.1 %漯河: 2.0 %漯河: 2.0 %烟台: 0.1 %烟台: 0.1 %珠海: 1.4 %珠海: 1.4 %益阳: 0.1 %益阳: 0.1 %石家庄: 0.9 %石家庄: 0.9 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 23.8 %芒廷维尤: 23.8 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.5 %苏州: 0.5 %蚌埠: 0.1 %蚌埠: 0.1 %西宁: 22.3 %西宁: 22.3 %西安: 2.0 %西安: 2.0 %运城: 0.8 %运城: 0.8 %邯郸: 0.5 %邯郸: 0.5 %郑州: 0.5 %郑州: 0.5 %重庆: 0.2 %重庆: 0.2 %镇江: 0.1 %镇江: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 3.2 %长沙: 3.2 %青岛: 1.9 %青岛: 1.9 %其他其他FalkensteinSaitama上海东莞临汾北京十堰华盛顿州南京南昌南通台北台州合肥咸阳哈尔滨哥伦布唐山嘉兴大连天津太原宁波宜春宣城山景城广州张家口德阳惠州成都扬州揭阳无锡昆明景德镇朝阳杭州武汉池州沈阳洛阳济南淮安深圳清远温州湖州滁州漯河烟台珠海益阳石家庄福州秦皇岛芒廷维尤芝加哥苏州蚌埠西宁西安运城邯郸郑州重庆镇江长春长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article views(530) PDF downloads(64) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return