Citation: | JIANG Hao, SU Zhenzhong, JIANG Yapeng. Optimized Design of High-Load Capacity Magnetic Bearings[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 965-975, 985. doi: 10.3969/j.issn.0258-2724.20240553 |
High-speed and heavy-load applications are an important trend for magnetic bearings (MBs). To address issues such as low load capacity and disconnection between electromagnetic design and controller in traditional MBs, increasing the working magnetic flux density of the MBs to approach the material’s saturation region was proposed, which helps improve the load capacity. On this basis, an integrated structure-control design of high-load capacity MBs was carried out with the saturation and strong electromechanical coupling characteristics taken into consideration. Firstly, factors such as saturation and rotor eccentricity were considered to establish a nonlinear magnetic circuit model of the high-load capacity MBs. Then, based on the rotor dynamics model, the coupling relationship between the structural design and the control system was analyzed. Constraints such as load capacity, power amplifier voltage, and system stability of the MBs were considered, with optimization objectives set as minimizing the axial length and maximizing the rate of change of force. A multi-objective optimization model for high-load capacity MBs was established and solved using the NSGA-Ⅱ algorithm to obtain the design scheme. Finally, the proposed design scheme was validated through finite element analysis and experiments. The results show that compared to traditional MBs, high-load capacity MBs increase the load capacity by nearly 21%. The error between the measured support stiffness of the prototype and the calculated stiffness from the nonlinear magnetic circuit is within 4.6%, demonstrating stable operation at high rotational speed.
[1] |
张维煜,张林东,于焰均. 磁悬浮支承-飞轮系统稳定运行关键技术综述[J]. 西南交通大学学报,2022,57(3): 627-639. doi: 10.3969/j.issn.0258-2724.20210745
ZHANG Weiyu, ZHANG Lindong, YU Yanjun. Review on key technologies of stable operation for magnetic suspension support-flywheel system[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 627-639. doi: 10.3969/j.issn.0258-2724.20210745
|
[2] |
周扬,周瑾,张越,等. 基于RBF近似模型的磁悬浮轴承结构优化设计[J]. 西南交通大学学报,2022,57(3): 682-692. doi: 10.3969/j.issn.0258-2724.20210766
ZHOU Yang, ZHOU Jin, ZHANG Yue, et al. Optimum structural design of active magnetic bearing based on RBF approximation model[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 682-692. doi: 10.3969/j.issn.0258-2724.20210766
|
[3] |
胡余生,李立毅,郭伟林,等. 基于不等磁路面积设计方法的磁轴承刚度[J]. 西南交通大学学报,2022,57(3): 648-656.
HU Yusheng, LI Liyi, GUO Weilin, et al. Support stiffness of magnetic bearing based on unequal magnetic circuit area design method[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 648-656.
|
[4] |
金超武,辛宇,周扬,等. 高温磁轴承-转子系统建模与动力学分析[J]. 西南交通大学学报,2024,59(4): 746-754.
JIN Chaowu, XIN Yu, ZHOU Yang, et al. Modeling and dynamics analysis of high-temperature magnetic bearing-rotor system[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 746-754.
|
[5] |
王东,姜豪,苏振中,等. 船用磁悬浮轴承关键技术与发展综述[J]. 中国电机工程学报,2020,40(20): 6704-6715.
WANG Dong, JIANG Hao, SU Zhenzhong, et al. A review on the key technologies and development of marine magnetic bearings[J]. Proceedings of the CSEE, 2020, 40(20): 6704-6715.
|
[6] |
禹春敏,邓智泉,梅磊,等. 基于精确磁路的新型混合型轴向-径向磁悬浮轴承研究[J]. 电工技术学报,2021,36(6): 1219-1228.
YU Chunmin, DENG Zhiquan, MEI Lei, et al. Research of new hybrid axial-radial magnetic bearing based on accurate magnetic circuit[J]. Transactions of China Electrotechnical Society, 2021, 36(6): 1219-1228.
|
[7] |
赵旭升,邓智泉,汪波. 异极性永磁偏置径向磁轴承的参数设计与实现[J]. 电工技术学报,2012,27(7): 131-138,159.
ZHAO Xusheng, DENG Zhiquan, WANG Bo. Parameter design and realization of permanent magnet biased heterploar radial magnetic bearing[J]. Transactions of China Electrotechnical Society, 2012, 27(7): 131-138,159.
|
[8] |
钟志贤,蔡忠侯,祁雁英,等. 新型径向混合磁轴承的解耦设计与分析[J]. 中国电机工程学报,2022,42(4): 1596-1606.
ZHONG Zhixian, CAI Zhonghou, QI Yanying, et al. Decoupling design and analysis of a new radial Hybrid magnetic bearing[J]. Proceedings of the CSEE, 2022, 42(4): 1596-1606.
|
[9] |
LIU X X, DONG J Y, DU Y, et al. Design and static performance analysis of a novel axial hybrid magnetic bearing[J]. IEEE Transactions on Magnetics, 2014, 50(11): 1-4.
|
[10] |
金俊杰,王岩峰,徐程程,等. 人工肾脏泵用磁悬浮轴承设计与磁力特性分析[J]. 西南交通大学学报,2024,59(4): 795-803. doi: 10.3969/j.issn.0258-2724.20230090
JIN Junjie, WANG Yanfeng, XU Chengcheng, et al. Design and magnetic force characteristic analysis of magnetic levitation bearing for artificial kidney pumps[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 795-803. doi: 10.3969/j.issn.0258-2724.20230090
|
[11] |
SMIRNOV A, UZHEGOV N, SILLANPAA T, et al. High-speed electrical machine with active magnetic bearing system optimization[J]. IEEE Transactions on Industrial Electronics, 2017, 64(12): 9876-9885. doi: 10.1109/TIE.2017.2716875
|
[12] |
PINCKNEY F D, KEESEE J M. Magnetic bearing design and control optimization for a four-stage centrifugal compressor[J]. Tribology Transactions, 1992, 35(3): 561-565. doi: 10.1080/10402009208982157
|
[13] |
CHEN H C, CHANG S H. Genetic algorithms based optimization design of a PID controller for an active magnetic bearing[J]. International Journal of Computer Science and Network Security (IJCSNS), 2006, 6(12): 95-99.
|
[14] |
ZHONG Y, WU L, HUANG X, et al. An improved magnetic circuit model of a 3-DOF magnetic bearing considering leakage and cross coupling effects[J]. IEEE Transactions on Magnetics, 2017, 53(11): 1-6.
|
[15] |
SHAKIBAPOUR F, RAHIDEH A, MARDANEH M. 2D analytical model for heteropolar active magnetic bearings considering eccentricity[J]. IET Electric Power Applications, 2018, 12(5): 614-626. doi: 10.1049/iet-epa.2017.0669
|
[16] |
王大朋,王凤翔. 利用场路结合方法分析磁轴承悬浮力[J]. 电机与控制学报,2011,15(11): 8-13.
WANG Dapeng, WANG Fengxiang. Levitation force analysis of magnetic bearing by circuit-field combination method[J]. Electric Machines and Control, 2011, 15(11): 8-13.
|
[17] |
JIANG H, SU Z Z, WANG D. Analytical calculation of active magnetic bearing based on distributed magnetic circuit method[J]. IEEE Transactions on Energy Conversion, 2021, 36(3): 1841-1851. doi: 10.1109/TEC.2020.3040975
|
[18] |
叶品州,李红伟,于文涛,等. 考虑材料非线性及涡流影响的径向电磁轴承等效磁路建模[J]. 电工技术学报,2020,35(9): 1858-1867.
YE Pinzhou, LI Hongwei, YU Wentao, et al. Equivalent magnetic circuit modeling of radial active magnetic bearing considering material nonlinearity and eddy current effects[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1858-1867.
|
[19] |
刘程子,邓智泉,梅磊,等. 基于漏磁与磁阻系数迭代的三自由度混合型磁悬浮轴承的设计[J]. 航空动力学报,2013,28(3): 603-612.
LIU Chengzi, DENG Zhiquan, MEI Lei, et al. Design of 3-DOF hybrid magnetic bearing based on leakage coefficient and magnetoresistance coefficient iterative method[J]. Journal of Aerospace Power, 2013, 28(3): 603-612.
|
[20] |
LE Y, WANG K. Design and optimization method of magnetic bearing for high-speed motor considering eddy current effects[J]. ASME Transactions on Mechatronics, 2016, 21(4): 2061-2072. doi: 10.1109/TMECH.2016.2569822
|
[21] |
ZHU R Z, XU W, YE C Y, et al. Design optimization of a novel heteropolar radial hybrid magnetic bearing using magnetic circuit model[J]. IEEE Transactions on Magnetics, 2018, 54(3): 1-5. doi: 10.1109/TMAG.2018.2800462
|
[22] |
JIN Z J, SUN X D, CAI Y F, et al. Comprehensive sensitivity and cross-factor variance analysis-based multi-objective design optimization of a 3-DOF hybrid magnetic bearing[J]. IEEE Transactions on Magnetics, 2021, 57(2): 1-4.
|
[23] |
GERHARD S, ERIC H M. Magnetic bearing: theory, design, and application to rotating machinery[M]. Berlin: Springer, 2009.
|
[24] |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
|
[25] |
JIANG H, SU Z Z, WANG D, et al. Multiparameter identification for active magnetic bearing with uncertainties based on a coupled nonlinear model[J]. IEEE Transactions on Industrial Electronics, 2023, 70(10): 10431-10441. doi: 10.1109/TIE.2022.3222595
|
[1] | DENG Kailai, ZHANG Yexin, LI Zhiyuan, HAO Minghui, LIAO Wenbin. Seismic Failure Analysis of High-Pier Aqueduct Water-Stop Based on Fluid-Solid Coupling[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230640 |
[2] | LEI Hujun, HUANG Jiangze. Seismic Responses Analysis of Train-Track-Bridge System Considering Pile-Soil Interaction[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 229-237. doi: 10.3969/j.issn.0258-2724.20190694 |
[3] | LI Bingtian, QIU Wenge, QI Xingxin, DENG Zhiheng, HU Hui. Shaking Table Tests on Seismic Response of Tunnel with Longitudinal Cracking Lining[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 20-27, 55. doi: 10.3969/j.issn.0258-2724.20190657 |
[4] | FANG Dengjia, DU Yongfeng, LIU Chengqing, DENG Youyi. Analysis for Displacement Response Characteristics of Complex Multi-layer Base-Isolated Structure under Near-Field Ground Motion[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 158-166, 192. doi: 10.3969/j.issn.0258-2724.20181038 |
[5] | CUI Jie, LU Yaobo, QÜ Jianxin, LI Yadong. Influencing Factors Analysis of Seismic Responses of Water Immersed Tunnel[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1224-1230. doi: 10.3969/j.issn.0258-2724.20180875 |
[6] | SHAN Deshan, GU Xiaoyu, DONG Jun, LI Qiao. 3D Seismic Vulnerability Analysis of Bridge Structural Components Based on Reliability[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 885-896. doi: 10.3969/j.issn.0258-2724.20170881 |
[7] | PAN Yi, WANG Xiaoyue, XU Hu, XIE Dan. Seismic Fragility Analysis of Nepalese Brick-Timber Heritage Structures under Near-Fault Pulse-Like Ground Motions[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1156-1163. doi: 10.3969/j.issn.0258-2724.2017.06.016 |
[8] | LIU Lang, YANG Wanli, LI Qiao. Seismic Analysis Method of Deep-Water Bridge Pier and Water Coupling[J]. Journal of Southwest Jiaotong University, 2015, 28(3): 449-453. doi: 10.3969/j.issn.0258-2724.2015.03.010 |
[9] | LEI Hujun, LI Xiaozhen. Effects of Structural Quasi-static Components on Seismic Responses of Train-Track-Bridge System[J]. Journal of Southwest Jiaotong University, 2015, 28(1): 124-130,136. doi: 10.3969/j.issn.0258-2724.2015.01.018 |
[10] | DONG Jun, SHAN Deshan, ZHANG Erhua, MA Teng. Seismic Fragility of Irregular Continuous Rigid Frame Bridge[J]. Journal of Southwest Jiaotong University, 2015, 28(5): 845-851,878. doi: 10.3969/j.issn.0258-2724.2015.05.012 |
[11] | QIAO Hong, XIA He, DU Xianting. Analytical Method for Calculating Dynamic Response of Coupled Train-Bridge System Based on Duhamel Integral[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 766-771. doi: 10.3969/j.issn.0258-2724.2014.05.004 |
[12] | XING Fan, ZHU Bing, ZHAO Canhui. Dynamic Stability of Long-Span CFST Arch Bridge under Action of Near-Fault Ground Motions[J]. Journal of Southwest Jiaotong University, 2012, 25(3): 367-372. doi: 10.3969/j.issn.0258-2724.2012.03.003 |
[13] | CHEN Libo, ZHENG Kaifeng, ZHUANG Weilin, MA Hongsheng, ZHANG Jianjing. Analytical Investigation of Bridge Seismic Vulnerability in Wenchuan Earthquake[J]. Journal of Southwest Jiaotong University, 2012, 25(4): 558-566. doi: 10.3969/j.issn.0258-2724.2012.04.004 |
[14] | WANG Bo, ZHANG Hailong, XU Feng. Seismic Time-History Response Analysis of Cable-Stayed Bridge with Local Cable Vibration[J]. Journal of Southwest Jiaotong University, 2008, 21(4): 441-446. |
[15] | GENG Ping, HE Chuan, YAN Qixiang. Analysis of Longitudinal Seismic Response of Shield Tunnel[J]. Journal of Southwest Jiaotong University, 2007, 20(3): 283-287. |
[16] | ZHAO Canhui, ZHOU Zhixiang. Fast Algorithm for Stationary Stochastic Response Subjected to Multi-component Multi-support Seismic Excitation[J]. Journal of Southwest Jiaotong University, 2007, 20(1): 55-60. |
[17] | ZHAO Can-hui, ZHOUZhi-xiang. Stationary Stochastic Response ofCFST Arch Bridge to Multi-component Seism ic Excitation[J]. Journal of Southwest Jiaotong University, 2005, 18(2): 200-204. |
[18] | SU Qian, CAI Ying. A Spatial Time-Varying Coupling Model for Dynamic Analysis of High Speed Railway Subgrade[J]. Journal of Southwest Jiaotong University, 2001, 14(5): 509-513. |
[19] | CHENWei-qing, ZHANG Qiang. A Model Test on the Anchorage Zones of the Second Nanjing Changjiang River Bridge[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 185-189. |
1. | 李密,戴朝华,张钟保,陈维荣,李燕. 考虑长大坡道自牵引过分相与应急自走行的车载储能优化配置. 铁道学报. 2025(02): 64-73 . ![]() | |
2. | 聂秀珍,焦迎雪,何小刚. 城市载客轨道列车用储能式混合动力牵引. 电池. 2025(02): 307-313 . ![]() | |
3. | 黄全高,谢亦才. 基于MR混合现实的足球机器人目标跟踪仿真. 计算机仿真. 2024(04): 408-412 . ![]() | |
4. | 王铁成,李旭,姚忻. 100%低地板有轨电车燃料电池混合动力系统匹配方法研究. 铁道机车与动车. 2024(08): 6-10+5 . ![]() | |
5. | 陈维荣,王颖民,李秉训,孟翔,张世聪,李奇. 氢能轨道交通的研究现状与发展趋势. 机车电传动. 2023(03): 1-11 . ![]() | |
6. | 李明,高利华,李泽宇. 氢能源轨道车辆及动力系统发展与创新. 机车电传动. 2023(03): 32-39 . ![]() | |
7. | 刘正杰,朱云芳,戴朝华,郭爱,李密,陈维荣. 增程式燃料电池混合动力有轨电车电源系统优化配置. 太阳能学报. 2022(03): 67-73 . ![]() | |
8. | 李明,张骄,崔霆锐,李倬. 北京地铁绿色低碳技术创新研究与应用. 机车电传动. 2022(03): 29-36 . ![]() | |
9. | 邬春晖,李明,张骄. 轨道工程车燃料电池供电技术应用方案研究. 轨道交通材料. 2022(01): 29-33 . ![]() | |
10. | 陈文海,周莹. 一种有轨电车车载复合储能系统及其充放电策略. 电力机车与城轨车辆. 2021(02): 28-33 . ![]() | |
11. | 王旭海,续文政,刘京斗,曾国宏. 一种轨道交通混合动力试验平台设计方案. 电力电子技术. 2021(09): 1-5 . ![]() | |
12. | 王峰,刘波峰,柴淑颖,王丹璐. 基于MCD-AHP的预装式变电站城市化属性指标评价. 西南交通大学学报. 2021(05): 1020-1028 . ![]() |