• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 59 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
WANG Ming, LI Xingxing, LI Xiaozhen. Mechanism of High-Speed Train Crosswind Overturning Stability Based on Frequency Domain Analysis[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 315-322, 342. doi: 10.3969/j.issn.0258-2724.20210571
Citation: WANG Ming, LI Xingxing, LI Xiaozhen. Mechanism of High-Speed Train Crosswind Overturning Stability Based on Frequency Domain Analysis[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 315-322, 342. doi: 10.3969/j.issn.0258-2724.20210571

Mechanism of High-Speed Train Crosswind Overturning Stability Based on Frequency Domain Analysis

doi: 10.3969/j.issn.0258-2724.20210571
  • Received Date: 20 Jul 2021
  • Rev Recd Date: 08 Oct 2021
  • Available Online: 05 Jan 2023
  • Publish Date: 27 Oct 2021
  • The dominant factor impacting the dynamic performance of a train under a crosswind changes from wheel-rail interactions to the aerodynamic force, making the crosswind overturning risk the main threat to safe train operation. This study first analyzes the train overturning stability using a refined coupling model to reveal its sensitivity to the train model. On the basis of a frequency domain framework accounting for the modal characteristic, transfer functions between the wind turbulence and track irregularities and the overturning responses are derived. The mechanism of train crosswind overturning is then intuitively interpreted via a parameter analysis. The results show that the overturning behavior of a train is controlled by the rolling mode around the lower center of the car body and the floating mode of the car body and that the influence of the wind load is significantly greater than that of track irregularities. Under track irregularity excitation, the first modal response primarily arises from the alignment component, while the second modal response arises from the vertical component. Under a wind load, the longitudinal fluctuating wind component plays a major role. Increasing the train speed, wind velocity, and wind direction angle increases the dynamic response of the train and reduces the maximum allowable wind speed to safely run the train. An increase in the failure probability can reduce extreme responses and increase the wind speed for safe operation.

     

  • loading
  • [1]
    CHRISTINA R, RUNG T, WU D. Computational modelling of cross-wind stability of high-speed trains[J]. European Congress on Computational Methods in Applied Sciences and Engineering, 2004(7): 24-28.
    [2]
    航空鉄道事故調査委員会. 西日本旅客鉄道株式会社福知山線塚口駅~尼崎駅間列車脱線事故[M]. 东京: 航空·鉄道事故調査委員会, 2007.
    [3]
    金学松,郭俊,肖新标,等. 高速列车安全运行研究的关键科学问题[J]. 工程力学,2009,26(增2): 8-22,105.

    JIN Xuesong, GUO Jun, XIAO Xinbiao, et al. Key scientific problems in the study on running safety of high speed trains[J]. Engineering Mechanics, 2009, 26(S2): 8-22,105.
    [4]
    翟婉明, 夏禾. 列车-轨道-桥梁动力相互作用理论与工程应用[M]. 北京: 科学出版社, 2011.
    [5]
    YU M G, LIU J L, LIU D W, et al. Investigation of aerodynamic effects on the high-speed train exposed to longitudinal and lateral wind velocities[J]. Journal of Fluids and Structures, 2016, 61: 347-361. doi: 10.1016/j.jfluidstructs.2015.12.005
    [6]
    CHELI F, CORRADI R, TOMASINI G. Crosswind action on rail vehicles: a methodology for the estimation of the characteristic wind curves[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 104/105/106: 248-255.
    [7]
    国枝正春. 鉄道車両の転ぷくに関する力学的理論解析[J]. 鉄道技術研究報告,1972(2): 1-15.
    [8]
    高广军. 强侧风作用下列车运行安全性研究[D]. 长沙: 中南大学, 2008.
    [9]
    BAKER C. A framework for the consideration of the effects of crosswinds on trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 123: 130-142. doi: 10.1016/j.jweia.2013.09.015
    [10]
    严乃杰. 横向风作用下移动列车风场特性、气动荷载及倾覆危险性研究[D]. 成都: 西南交通大学, 2019.
    [11]
    YAN N J, CHEN X Z, LI Y L. Assessment of overturning risk of high-speed trains in strong crosswinds using spectral analysis approach[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 174: 103-118. doi: 10.1016/j.jweia.2017.12.024
    [12]
    WANG M, CHEN X Z, LI X Z, et al. A frequency domain analysis framework for assessing overturning risk of high-speed trains under crosswind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 202: 104196.1-104196.14.
    [13]
    王开文. 车轮接触点迹线及轮轨接触几何参数的计算[J]. 西南交通大学学报,1984,19(1): 89-99.

    WANG Kaiwen. The track of wheel contact points and the calculation of wheel/rail geometric contact parameters[J]. Journal of Southwest Jiaotong University, 1984, 19(1): 89-99.
    [14]
    CARRARINI A. Reliability based analysis of the crosswind stability of railway vehicles[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(7): 493-509. doi: 10.1016/j.jweia.2006.10.001
    [15]
    TSI H. Technical specification for interoperability relating to the ‘rolling stock’ sub-system of the trans-european high-speed rail system[R]. Aberdeen: Official Journal of the European Union, 2008.
    [16]
    DIEDRICHS B, EKEQUIST M, STICHEL S, et al. Quasi-static modelling of wheel-rail reactions due to crosswind effects for various types of high-speed rolling stock[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2004, 218(2): 133-148. doi: 10.1243/0954409041319614
    [17]
    CHEN X Z, KAREEM A. Equivalent static wind loads for buffeting response of bridges[J]. Journal of Structural Engineering, 2001, 127(12): 1467-1475. doi: 10.1061/(ASCE)0733-9445(2001)127:12(1467)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views(422) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return