• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
LIU Youneng, HUANG Runqiu, LIU Enlong, LIAO Mengke. Influence of Freezing-Thawing Cycles on Mechanical Properties of Tailing Soil at Yunnan-Guizhou Plateau[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1052-1059. doi: 10.3969/j.issn.0258-2724.20180520
Citation: DAI Zhiyuan, LI Tian, ZHANG Weihua, ZHANG Jiye. Multi-objective Aerodynamic Optimization on Head Shape of High-Speed Train Using Kriging Surrogate Model with Hybrid Infill Criterion[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 46-53. doi: 10.3969/j.issn.0258-2724.20220218

Multi-objective Aerodynamic Optimization on Head Shape of High-Speed Train Using Kriging Surrogate Model with Hybrid Infill Criterion

doi: 10.3969/j.issn.0258-2724.20220218
  • Received Date: 23 Mar 2022
  • Rev Recd Date: 19 Sep 2022
  • Available Online: 18 Nov 2023
  • Publish Date: 19 Sep 2022
  • In the multi-objective aerodynamic optimization design of high-speed trains, the optimization efficiency of the surrogate model established using the traditional infill criterion is low when the initial sample points are few. To this end, a hybrid infill criterion (HIC) was proposed by combining the improved expectation infill criterion (EIC) and the Pareto solution infill criterion (PIC). Meanwhile, a Kriging surrogate model was established using the HIC method, and multi-objective aerodynamic optimization on the head shape of the high-speed train was conducted, with the minimum aerodynamic drag force of the leading car, the minimum aerodynamic drag and lift force of the rear car as the objectives. The single-objective Branin test function and the multi-objective Poloni test function were taken as examples, and the convergence speed of EIC, PIC, and HIC surrogate models was compared. The results show that the optimization efficiency of the HIC surrogate model is improved by 50.0% compared with the EIC and PIC surrogate models in the single-objective optimization. For the multi-objective test function, the efficiency of the HIC surrogate model is improved by 62.5% compared with the PIC surrogate model. Moreover, the HIC surrogate model is used to carry out the multi-objective aerodynamic optimization of the head shape of the high-speed train, and the optimal solution model obtained reduces the above three objectives respectively by 1.6%, 1.7%, and 3.0% compared with the original model. The heights of the nose, the coupler area, and the cab window of the optimal solution are all reduced. Meanwhile, the two lateral contour lines are retracted.

     

  • [1]
    JEONG S, MURAYAMA M, YAMAMOTO K. Efficient optimization design method using kriging model[J]. Journal of Aircraft, 2005, 42(2): 413-420. doi: 10.2514/1.6386
    [2]
    KUHNT S, STEINBERG D M. Design and analysis of computer experiments[J]. AStA Advances in Statistical Analysis, 2010, 94(4): 307-309. doi: 10.1007/s10182-010-0143-0
    [3]
    FORRESTER A I J, KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1/2/3): 50-79.
    [4]
    WANG Q Q, MOIN P, IACCARINO G. A rational interpolation scheme with superpolynomial rate of convergence[J]. SIAM Journal on Numerical Analysis, 2010, 47(6): 4073-4097. doi: 10.1137/080741574
    [5]
    韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报,2016,37(11): 3197-3225.

    HAN Zhonghua. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225.
    [6]
    SUN Z X, SONG J J, AN Y R. Optimization of the head shape of the CRH3 high speed train[J]. Science China: Technological Sciences, 2010, 53(12): 3356-3364. doi: 10.1007/s11431-010-4163-5
    [7]
    LEE J, KIM J. Approximate optimization of high-speed train nose shape for reducing micropressure wave[J]. Structural and Multidisciplinary Optimization, 2008, 35(1): 79-87.
    [8]
    YAO S B, GUO D L, SUN Z X, et al. Optimization design for aerodynamic elements of high speed trains[J]. Computers & Fluids, 2014, 95: 56-73.
    [9]
    YAO S B, GUO D L, SUN Z X, et al. Parametric design and optimization of high speed train nose[J]. Optimization and Engineering, 2016, 17(3): 605-630. doi: 10.1007/s11081-015-9298-6
    [10]
    ZHANG N, WANG P, DONG H C, et al. Shape optimization for blended-wing–body underwater glider using an advanced multi-surrogate-based high-dimensional model representation method[J]. Engineering Optimization, 2020, 52(12): 2080-2099. doi: 10.1080/0305215X.2019.1694674
    [11]
    张亮,张继业,李田,等. 超高速列车流线型头型多目标优化设计[J]. 机械工程学报,2017,53(2): 106-114. doi: 10.3901/JME.2017.02.106

    ZHANG Liang, ZHANG Jiye, LI Tian, et al. Multi-objective optimization design of the streamlined head shape of super high-speed trains[J]. Journal of Mechanical Engineering, 2017, 53(2): 106-114. doi: 10.3901/JME.2017.02.106
    [12]
    MUÑOZ-PANIAGUA J, GARCÍA J. Aerodynamic drag optimization of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 204: 104215.1-104215.15.
    [13]
    YAO S B, GUO D L, SUN Z X, et al. A modified multi-objective sorting particle swarm optimization and its application to the design of the nose shape of a high-speed train[J]. Engineering Applications of Computational Fluid Mechanics, 2015, 9(1): 513-527. doi: 10.1080/19942060.2015.1061557
    [14]
    ZHANG L, LI T, ZHANG J Y, et al. Optimization on the crosswind stability of trains using neural network surrogate model[J]. Chinese Journal of Mechanical Engineering, 2021, 34(1): 1-17. doi: 10.1186/s10033-020-00524-5
    [15]
    SEKISHIRO M, VENTER G, BALABANOV V. Combined kriging and gradient-based optimization method[C]//Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Portsmouth: AIAA, 2006: 7091.13-7091.13.
    [16]
    FORRESTER A I J, SÓBESTER A, KEANE A J. Engineering design via surrogate modelling: a practical guide[M]. Chichester: John Wiley and Sons, Ltd., 2008
    [17]
    PARK J S. Optimal Latin-hypercube designs for computer experiments[J]. Journal of Statistical Planning and Inference, 1994, 39(1): 95-111. doi: 10.1016/0378-3758(94)90115-5
    [18]
    POLONI C, GIURGEVICH A, ONESTI L, et al. Hybridization of a multi-objective genetic algorithm, a neural network and a classical optimizer for a complex design problem in fluid dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2/3/4): 403-420.
    [19]
    LI T, DAI Z Y, YU M G, et al. Numerical investigation on the aerodynamic resistances of double-unit trains with different gap lengths[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 549-560. doi: 10.1080/19942060.2021.1895321
    [20]
    LI T, HEMIDA H, ZHANG J Y, et al. Comparisons of shear stress transport and detached eddy simulations of the flow around trains[J]. Journal of Fluids Engineering, 2018, 140(11): 111108.1-111108.12.
    [21]
    LI T, LI M, WANG Z, et al. Effect of the inter-car gap length on the aerodynamic characteristics of a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(4): 448-465. doi: 10.1177/0954409718799809
    [22]
    国家铁路局. 铁路应用 · 空气动力学 · 第4部分: 列车空气动力学性能数值仿真规范: TB/T 3503.4—2018[S]. 北京: 中国铁道出版社, 2018.
  • Relative Articles

    [1]LIANG Jiguan, HUANG Linchong, MA Jianjun, CHEN Wanxiang. Comparison of Stress-Dilatancy Rules and Research on Stress-Dilatancy Rule for Rocks[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 656-664. doi: 10.3969/j.issn.0258-2724.20230231
    [2]YU Yunyan, LUO Chongliang, CUI Wenhao, DU Qianzhong, GAO Yuan, ZHANG Tinghua. Heat–Mass Transfer and Salt-Frost Heave Mechanism of Saline Soil under Freeze–Thaw Cycle[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230299
    [3]LI Jin, SHI Yuefeng, XIAO Xin, LOU Liangwei, CAI Degou, XIAO Feipeng. Freeze-Thaw Damage Evolution Model of Asphalt Concrete for Waterproofing Layer in High-Speed Railways[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 281-288. doi: 10.3969/j.issn.0258-2724.20220335
    [4]LI Fuhai, TANG Huiqi, LI Jiyun, LIU Menghui, WANG Jiangshan, CHEN Shuang, XU Tengfei. Concrete Elastic Modulus and Creep Control Based on Dense Packing Theory[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 404-412. doi: 10.3969/j.issn.0258-2724.20210431
    [5]HOU Chao, JIN Xiaoguang, HE Jie, ZHANG Chi. Research on Damage Model of Rock Under Freeze-Thaw Cycles Based on Maximum Tensile Strain Criterion[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1045-1055. doi: 10.3969/j.issn.0258-2724.20210493
    [6]FENG Bo, LIU Qing, QIAN Yongjiu. Durability Analysis of High-Performance Concrete Under Chloride Salt Erosion and Freeze-Thaw Cycles[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1083-1089. doi: 10.3969/j.issn.0258-2724.20220035
    [7]XUE Gang, FU Qian, ZHOU Haifeng, SUN Lisuo. Experimental Study on Stress-Strain Relationship of Steel Slag Fine Aggregate Concrete Under Uniaxial Compression[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1165-1174. doi: 10.3969/j.issn.0258-2724.20210099
    [8]ZHANG Yafeng, ZHANG Shaohua, ZHOU Gang, ZHANG Jiyang, QING Tao, ZHOU Ningning. Strain Rate Sensitivity of Porous Cotton-Phenolic Bearing Retainer[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 847-852, 863. doi: 10.3969/j.issn.0258-2724.20190457
    [9]CUI Kai, SU Lei. Effect of Coarse Grain Content on Shear Strength of Mixed Soil in Western Sichuan[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 778-785. doi: 10.3969/j.issn.0258-2724.20180826
    [10]ZHANG Yanjun, NIAN Tingkai, WANG Liang, TANG Jun. Research on Similar Materials for Physical Model Tests of Rock Slopes[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 55-60, 72. doi: 10.3969/j.issn.0258-2724.20160366
    [11]JING Guoqing, HUANG Hongmei, SHI Xiaoyi, CAI Xiaopei. Triaxial Test and DEM Analysis of Ballast Aggregate with Angularity Breakage[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 216-221. doi: 10.3969/j.issn.0258-2724.2017.02.002
    [12]ZHU Baolong, WU Xiyong, LI Xiaoning, WEI Jiuping. Triaxial CT Tests of Meso-Structure Evolution of Remodeled Cohesive Soil in Hefei[J]. Journal of Southwest Jiaotong University, 2015, 28(1): 144-149. doi: 10.3969/j.issn.0258-2724.2015.01.021
    [13]SUN Bing, QIU Wenge, ZHOU Chao. Experimental Investigation on Triaxial Frost Heaving Stress-Strain Relationship of Saturated Clay[J]. Journal of Southwest Jiaotong University, 2009, 22(2): 177-180,268.
    [14]HUDe-gui, LUO Shu-xue, ZHAO Shan-rui. A DeterminationMethod of Soil ShearModulus in Pile Foundation[J]. Journal of Southwest Jiaotong University, 2001, 14(1): 23-26.
  • Cited by

    Periodical cited type(6)

    1. 刘昊,黄刚,张骥,印提军,杨云钦,杨超凡,陈静. 冻融循环条件下尾矿材料力学行为的关键影响因素研究. 矿业研究与开发. 2025(04): 39-45 .
    2. 蒋婷婷,潘华利,艾一帆,熊薇. 冻融循环及含水率对冰碛土力学特性影响. 地质科技通报. 2024(02): 238-252 .
    3. 陈荣健,张诏飞,席伟,闻磊. 高寒地区尾矿库冻土分布及冻融规律研究. 金属矿山. 2023(02): 209-216 .
    4. 周婷,孙静,陈浩,王润泽,赵浩男. 冻融循环作用下石墨尾矿抗剪强度特性研究. 黑龙江大学工程学报(中英俄文). 2023(02): 65-71 .
    5. 商可,刘恩龙,黄记,张贵科,俞祁浩. 冻融循环作用下砾石土心墙土料的力学特性. 西安理工大学学报. 2022(01): 112-120 .
    6. 李军平,刘志强. 水热力耦合作用下冻融循环对冻土边坡的稳定性影响. 河南科技. 2021(31): 132-135 .

    Other cited types(17)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0701020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 37.4 %FULLTEXT: 37.4 %META: 55.5 %META: 55.5 %PDF: 7.1 %PDF: 7.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.4 %其他: 12.4 %其他: 1.4 %其他: 1.4 %Singapore: 0.1 %Singapore: 0.1 %万隆: 0.3 %万隆: 0.3 %上海: 3.9 %上海: 3.9 %东莞: 0.1 %东莞: 0.1 %临汾: 0.1 %临汾: 0.1 %伊瓦格: 0.3 %伊瓦格: 0.3 %六安: 0.3 %六安: 0.3 %北京: 3.9 %北京: 3.9 %十堰: 0.6 %十堰: 0.6 %南京: 1.0 %南京: 1.0 %南昌: 0.6 %南昌: 0.6 %南阳: 0.1 %南阳: 0.1 %厦门: 0.1 %厦门: 0.1 %合肥: 0.1 %合肥: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.3 %哥伦布: 0.3 %哥德堡: 0.4 %哥德堡: 0.4 %唐山: 0.1 %唐山: 0.1 %嘉兴: 0.3 %嘉兴: 0.3 %大庆: 0.4 %大庆: 0.4 %天津: 1.1 %天津: 1.1 %安康: 0.3 %安康: 0.3 %宣城: 0.1 %宣城: 0.1 %山景城: 0.7 %山景城: 0.7 %常德: 0.1 %常德: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.4 %广州: 0.4 %延安: 0.3 %延安: 0.3 %张家口: 1.4 %张家口: 1.4 %徐州: 0.3 %徐州: 0.3 %德阳: 0.3 %德阳: 0.3 %成都: 1.5 %成都: 1.5 %扬州: 0.3 %扬州: 0.3 %新德里: 0.3 %新德里: 0.3 %日照: 0.1 %日照: 0.1 %昆明: 0.4 %昆明: 0.4 %杭州: 0.6 %杭州: 0.6 %松原: 0.1 %松原: 0.1 %桂林: 0.1 %桂林: 0.1 %武汉: 0.4 %武汉: 0.4 %池州: 0.3 %池州: 0.3 %沈阳: 0.7 %沈阳: 0.7 %泗水: 0.3 %泗水: 0.3 %洛阳: 0.3 %洛阳: 0.3 %淄博: 0.6 %淄博: 0.6 %深圳: 0.3 %深圳: 0.3 %湖州: 0.1 %湖州: 0.1 %漯河: 2.5 %漯河: 2.5 %烟台: 0.1 %烟台: 0.1 %石家庄: 5.4 %石家庄: 5.4 %福州: 0.6 %福州: 0.6 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 21.1 %芒廷维尤: 21.1 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 0.3 %苏州: 0.3 %蒙特利尔: 0.7 %蒙特利尔: 0.7 %衡阳: 0.1 %衡阳: 0.1 %襄阳: 0.1 %襄阳: 0.1 %西宁: 16.6 %西宁: 16.6 %西安: 1.1 %西安: 1.1 %诺沃克: 0.6 %诺沃克: 0.6 %贵阳: 0.8 %贵阳: 0.8 %运城: 1.1 %运城: 1.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 5.3 %郑州: 5.3 %重庆: 0.3 %重庆: 0.3 %长春: 0.1 %长春: 0.1 %长沙: 2.4 %长沙: 2.4 %阿奈恩: 0.6 %阿奈恩: 0.6 %青岛: 0.1 %青岛: 0.1 %黄冈: 0.1 %黄冈: 0.1 %其他其他Singapore万隆上海东莞临汾伊瓦格六安北京十堰南京南昌南阳厦门合肥哈尔滨哥伦布哥德堡唐山嘉兴大庆天津安康宣城山景城常德平顶山广州延安张家口徐州德阳成都扬州新德里日照昆明杭州松原桂林武汉池州沈阳泗水洛阳淄博深圳湖州漯河烟台石家庄福州秦皇岛芒廷维尤芝加哥苏州蒙特利尔衡阳襄阳西宁西安诺沃克贵阳运城邯郸郑州重庆长春长沙阿奈恩青岛黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views(398) PDF downloads(51) Cited by(23)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return