• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
DAI Zhiyuan, LI Tian, ZHANG Weihua, ZHANG Jiye. Multi-objective Aerodynamic Optimization on Head Shape of High-Speed Train Using Kriging Surrogate Model with Hybrid Infill Criterion[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 46-53. doi: 10.3969/j.issn.0258-2724.20220218
Citation: DAI Zhiyuan, LI Tian, ZHANG Weihua, ZHANG Jiye. Multi-objective Aerodynamic Optimization on Head Shape of High-Speed Train Using Kriging Surrogate Model with Hybrid Infill Criterion[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 46-53. doi: 10.3969/j.issn.0258-2724.20220218

Multi-objective Aerodynamic Optimization on Head Shape of High-Speed Train Using Kriging Surrogate Model with Hybrid Infill Criterion

doi: 10.3969/j.issn.0258-2724.20220218
  • Received Date: 23 Mar 2022
  • Rev Recd Date: 19 Sep 2022
  • Available Online: 18 Nov 2023
  • Publish Date: 19 Sep 2022
  • In the multi-objective aerodynamic optimization design of high-speed trains, the optimization efficiency of the surrogate model established using the traditional infill criterion is low when the initial sample points are few. To this end, a hybrid infill criterion (HIC) was proposed by combining the improved expectation infill criterion (EIC) and the Pareto solution infill criterion (PIC). Meanwhile, a Kriging surrogate model was established using the HIC method, and multi-objective aerodynamic optimization on the head shape of the high-speed train was conducted, with the minimum aerodynamic drag force of the leading car, the minimum aerodynamic drag and lift force of the rear car as the objectives. The single-objective Branin test function and the multi-objective Poloni test function were taken as examples, and the convergence speed of EIC, PIC, and HIC surrogate models was compared. The results show that the optimization efficiency of the HIC surrogate model is improved by 50.0% compared with the EIC and PIC surrogate models in the single-objective optimization. For the multi-objective test function, the efficiency of the HIC surrogate model is improved by 62.5% compared with the PIC surrogate model. Moreover, the HIC surrogate model is used to carry out the multi-objective aerodynamic optimization of the head shape of the high-speed train, and the optimal solution model obtained reduces the above three objectives respectively by 1.6%, 1.7%, and 3.0% compared with the original model. The heights of the nose, the coupler area, and the cab window of the optimal solution are all reduced. Meanwhile, the two lateral contour lines are retracted.

     

  • [1]
    JEONG S, MURAYAMA M, YAMAMOTO K. Efficient optimization design method using kriging model[J]. Journal of Aircraft, 2005, 42(2): 413-420. doi: 10.2514/1.6386
    [2]
    KUHNT S, STEINBERG D M. Design and analysis of computer experiments[J]. AStA Advances in Statistical Analysis, 2010, 94(4): 307-309. doi: 10.1007/s10182-010-0143-0
    [3]
    FORRESTER A I J, KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1/2/3): 50-79.
    [4]
    WANG Q Q, MOIN P, IACCARINO G. A rational interpolation scheme with superpolynomial rate of convergence[J]. SIAM Journal on Numerical Analysis, 2010, 47(6): 4073-4097. doi: 10.1137/080741574
    [5]
    韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报,2016,37(11): 3197-3225.

    HAN Zhonghua. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225.
    [6]
    SUN Z X, SONG J J, AN Y R. Optimization of the head shape of the CRH3 high speed train[J]. Science China: Technological Sciences, 2010, 53(12): 3356-3364. doi: 10.1007/s11431-010-4163-5
    [7]
    LEE J, KIM J. Approximate optimization of high-speed train nose shape for reducing micropressure wave[J]. Structural and Multidisciplinary Optimization, 2008, 35(1): 79-87.
    [8]
    YAO S B, GUO D L, SUN Z X, et al. Optimization design for aerodynamic elements of high speed trains[J]. Computers & Fluids, 2014, 95: 56-73.
    [9]
    YAO S B, GUO D L, SUN Z X, et al. Parametric design and optimization of high speed train nose[J]. Optimization and Engineering, 2016, 17(3): 605-630. doi: 10.1007/s11081-015-9298-6
    [10]
    ZHANG N, WANG P, DONG H C, et al. Shape optimization for blended-wing–body underwater glider using an advanced multi-surrogate-based high-dimensional model representation method[J]. Engineering Optimization, 2020, 52(12): 2080-2099. doi: 10.1080/0305215X.2019.1694674
    [11]
    张亮,张继业,李田,等. 超高速列车流线型头型多目标优化设计[J]. 机械工程学报,2017,53(2): 106-114. doi: 10.3901/JME.2017.02.106

    ZHANG Liang, ZHANG Jiye, LI Tian, et al. Multi-objective optimization design of the streamlined head shape of super high-speed trains[J]. Journal of Mechanical Engineering, 2017, 53(2): 106-114. doi: 10.3901/JME.2017.02.106
    [12]
    MUÑOZ-PANIAGUA J, GARCÍA J. Aerodynamic drag optimization of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 204: 104215.1-104215.15.
    [13]
    YAO S B, GUO D L, SUN Z X, et al. A modified multi-objective sorting particle swarm optimization and its application to the design of the nose shape of a high-speed train[J]. Engineering Applications of Computational Fluid Mechanics, 2015, 9(1): 513-527. doi: 10.1080/19942060.2015.1061557
    [14]
    ZHANG L, LI T, ZHANG J Y, et al. Optimization on the crosswind stability of trains using neural network surrogate model[J]. Chinese Journal of Mechanical Engineering, 2021, 34(1): 1-17. doi: 10.1186/s10033-020-00524-5
    [15]
    SEKISHIRO M, VENTER G, BALABANOV V. Combined kriging and gradient-based optimization method[C]//Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Portsmouth: AIAA, 2006: 7091.13-7091.13.
    [16]
    FORRESTER A I J, SÓBESTER A, KEANE A J. Engineering design via surrogate modelling: a practical guide[M]. Chichester: John Wiley and Sons, Ltd., 2008
    [17]
    PARK J S. Optimal Latin-hypercube designs for computer experiments[J]. Journal of Statistical Planning and Inference, 1994, 39(1): 95-111. doi: 10.1016/0378-3758(94)90115-5
    [18]
    POLONI C, GIURGEVICH A, ONESTI L, et al. Hybridization of a multi-objective genetic algorithm, a neural network and a classical optimizer for a complex design problem in fluid dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2/3/4): 403-420.
    [19]
    LI T, DAI Z Y, YU M G, et al. Numerical investigation on the aerodynamic resistances of double-unit trains with different gap lengths[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 549-560. doi: 10.1080/19942060.2021.1895321
    [20]
    LI T, HEMIDA H, ZHANG J Y, et al. Comparisons of shear stress transport and detached eddy simulations of the flow around trains[J]. Journal of Fluids Engineering, 2018, 140(11): 111108.1-111108.12.
    [21]
    LI T, LI M, WANG Z, et al. Effect of the inter-car gap length on the aerodynamic characteristics of a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(4): 448-465. doi: 10.1177/0954409718799809
    [22]
    国家铁路局. 铁路应用 · 空气动力学 · 第4部分: 列车空气动力学性能数值仿真规范: TB/T 3503.4—2018[S]. 北京: 中国铁道出版社, 2018.
  • Relative Articles

    [1]DING Haoxu, GUO Lirong, LI Zongzhi, ZHU Tao, WANG Binlin, YANG Bing, XIAO Shoune. Three-Dimensional Collision Dynamics Model of High-Speed Train Considering Vehicle-End Contact and Coupler Instability[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240084
    [2]JIANG Jie, DING Guofu, ZOU Yisheng, ZHANG Haizhu, HUANG Haiyu, LI Rong, ZHANG Jian. Iterative Optimization Design for Dynamic Performance Parameters of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 679-687, 697. doi: 10.3969/j.issn.0258-2724.20220071
    [3]ZHANG Haizhu, LI Rong, DING Guofu, MA Kai, DENG Hai. Research Status and Prospect of Decomposition of Top-Level Design Indicators for High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 456-466. doi: 10.3969/j.issn.0258-2724.20220188
    [4]WANG Ming, LI Xingxing, LI Xiaozhen. Mechanism of High-Speed Train Crosswind Overturning Stability Based on Frequency Domain Analysis[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 315-322, 342. doi: 10.3969/j.issn.0258-2724.20210571
    [5]WANG Yigang, ZHU Langxian, WANG Yupeng, ZHANG Hao, JIAO Yan. Characteristic Identification of Aerodynamic Noise Sources in High-Speed Train Bogie Area[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 261-271, 286. doi: 10.3969/j.issn.0258-2724.20210636
    [6]CHEN Yu, LIU Yiming, MAO Mao, LI Qiliang, WANG Yigang, YANG Zhigang. Influence of Underbody Parameters of High-Speed Trains on Aerodynamic Noise[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1171-1179. doi: 10.3969/j.issn.0258-2724.20220148
    [7]LI Tian, QIN Deng, ZHANG Jiye, ZHANG Weihua. Numerical Approach for Far-Field Aerodynamic Noise of High-Speed Trains Based on Half Model[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 272-279, 286. doi: 10.3969/j.issn.0258-2724.20210678
    [8]XIANG Huoyue, CHEN Xuli, LI Yongle. Reliability Analysis of Coupled Train-Bridge Systems Based on ARMAX Surrogate Model[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1217-1223, 1232. doi: 10.3969/j.issn.0258-2724.20200118
    [9]YAO Yuan, CHEN Xiangwang, LI Guang, ZHANG Zhenxian. Multi-objective Optimization of Yaw Damper Parameters for High-Speed Train[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1298-1304. doi: 10.3969/j.issn.0258-2724.20200016
    [10]WANG Yingxue, REN Wenqiang, LUO Yang, HE Jun. Analysis of Effect of Cross Adit on Train-Tunnel Aerodynamic Multiple Peak Characteristics[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 427-433. doi: 10.3969/j.issn.0258-2724.2018.03.001
    [11]ZHANG Yadong, ZHANG Jiye, ZHANG Liang, LI Tian. Numerical Analysis of Aerodynamic Noise of Motor Car Bogie for High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 870-877. doi: 10.3969/j.issn.0258-2724.2016.05.008
    [12]ZHANG Liang, ZHANG Jiye, LI Tian, ZHANG Weihua. Multi-objective Aerodynamic Optimization Design for Head Shape of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2016, 29(6): 1055-1063. doi: 10.3969/j.issn.0258-2724.2016.06.003
    [13]XIANG Huoyue, LI Yongle, SU Yang, LIAO Haili. Surrogate Model Optimizations for Protective Effects of Railway Wind Barriers[J]. Journal of Southwest Jiaotong University, 2016, 29(6): 1098-1104. doi: 10.3969/j.issn.0258-2724.2016.06.008
    [14]DU Jian, LIANG Jianying, TIAN Aiqin. Analysis of Aeroacoustics Characteristics for Pantograph of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2015, 28(5): 935-941. doi: 10.3969/j.issn.0258-2724.2015.05.025
    [15]HUANG Jian, PENG Qiyuan. Two-Stage Optimization Algorithm for Stop Schedule Plan of High-Speed Train[J]. Journal of Southwest Jiaotong University, 2012, 25(3): 484-489. doi: 10.3969/j.issn.0258-2724.2012.03.021
    [16]CHEN Xiang, XU Bochu, ZHANG Weihua. Optimization of Seat Comfort of High-Speed Train[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 906-911.
    [17]ZHAO Jing, LI Renxian. Numerical Analysis of Aerodynamics of High-Speed Trains Running into Tunnels[J]. Journal of Southwest Jiaotong University, 2009, 22(1): 96-100.
    [18]WANG Ying-xue, LUOJian-jun, LILun-gui, JUJuan. Model Experiment System for High-Speed Trains and Analysis of Its Similarity[J]. Journal of Southwest Jiaotong University, 2004, 17(1): 20-24.
  • Cited by

    Periodical cited type(2)

    1. 张迪, 贺亮, 周克栋, 赫雷, 黄雪鹰, 任海钺. 狙击外弹道气动参数建模技术综述. 兵器装备工程学报. 2025(07)
    2. 李健,曾维毅,周垚光,谢子豪. 高速列车转向架底部包覆板气动减阻效果研究. 中南大学学报(自然科学版). 2024(05): 1758-1770 .

    Other cited types(10)

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 36.7 %FULLTEXT: 36.7 %META: 57.2 %META: 57.2 %PDF: 6.1 %PDF: 6.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.0 %其他: 15.0 %其他: 1.2 %其他: 1.2 %Singapore: 0.1 %Singapore: 0.1 %万隆: 0.2 %万隆: 0.2 %上海: 3.3 %上海: 3.3 %东莞: 0.1 %东莞: 0.1 %中卫: 0.1 %中卫: 0.1 %临汾: 0.1 %临汾: 0.1 %伊瓦格: 0.2 %伊瓦格: 0.2 %保定: 0.1 %保定: 0.1 %六安: 0.2 %六安: 0.2 %北京: 3.4 %北京: 3.4 %十堰: 0.5 %十堰: 0.5 %南京: 0.8 %南京: 0.8 %南昌: 0.6 %南昌: 0.6 %南通: 0.1 %南通: 0.1 %南阳: 0.1 %南阳: 0.1 %厦门: 0.1 %厦门: 0.1 %合肥: 0.1 %合肥: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.2 %哥伦布: 0.2 %哥德堡: 0.4 %哥德堡: 0.4 %唐山: 0.1 %唐山: 0.1 %嘉兴: 0.4 %嘉兴: 0.4 %大庆: 0.4 %大庆: 0.4 %大连: 0.1 %大连: 0.1 %天津: 0.9 %天津: 0.9 %安康: 0.2 %安康: 0.2 %宣城: 0.2 %宣城: 0.2 %山景城: 0.8 %山景城: 0.8 %常州: 0.2 %常州: 0.2 %常德: 0.1 %常德: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.5 %广州: 0.5 %延安: 0.2 %延安: 0.2 %张家口: 1.9 %张家口: 1.9 %徐州: 0.2 %徐州: 0.2 %德阳: 0.2 %德阳: 0.2 %成都: 1.3 %成都: 1.3 %扬州: 0.4 %扬州: 0.4 %新德里: 0.2 %新德里: 0.2 %日照: 0.1 %日照: 0.1 %昆明: 0.4 %昆明: 0.4 %杭州: 0.5 %杭州: 0.5 %松原: 0.1 %松原: 0.1 %桂林: 0.1 %桂林: 0.1 %武汉: 0.4 %武汉: 0.4 %池州: 0.2 %池州: 0.2 %沈阳: 0.6 %沈阳: 0.6 %泗水: 0.2 %泗水: 0.2 %洛阳: 0.2 %洛阳: 0.2 %淄博: 0.8 %淄博: 0.8 %深圳: 0.2 %深圳: 0.2 %湖州: 0.1 %湖州: 0.1 %漯河: 2.1 %漯河: 2.1 %烟台: 0.1 %烟台: 0.1 %石家庄: 8.2 %石家庄: 8.2 %福州: 0.5 %福州: 0.5 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 19.5 %芒廷维尤: 19.5 %芝加哥: 0.9 %芝加哥: 0.9 %苏州: 0.2 %苏州: 0.2 %蒙特利尔: 0.6 %蒙特利尔: 0.6 %衡阳: 0.1 %衡阳: 0.1 %襄阳: 0.1 %襄阳: 0.1 %西宁: 15.7 %西宁: 15.7 %西安: 0.9 %西安: 0.9 %诺沃克: 0.5 %诺沃克: 0.5 %贵阳: 0.7 %贵阳: 0.7 %运城: 0.9 %运城: 0.9 %邯郸: 0.1 %邯郸: 0.1 %郑州: 4.5 %郑州: 4.5 %重庆: 0.4 %重庆: 0.4 %长春: 0.1 %长春: 0.1 %长沙: 2.2 %长沙: 2.2 %阿奈恩: 0.5 %阿奈恩: 0.5 %雷德蒙德: 0.9 %雷德蒙德: 0.9 %青岛: 0.1 %青岛: 0.1 %黄冈: 0.1 %黄冈: 0.1 %其他其他Singapore万隆上海东莞中卫临汾伊瓦格保定六安北京十堰南京南昌南通南阳厦门合肥哈尔滨哥伦布哥德堡唐山嘉兴大庆大连天津安康宣城山景城常州常德平顶山广州延安张家口徐州德阳成都扬州新德里日照昆明杭州松原桂林武汉池州沈阳泗水洛阳淄博深圳湖州漯河烟台石家庄福州秦皇岛芒廷维尤芝加哥苏州蒙特利尔衡阳襄阳西宁西安诺沃克贵阳运城邯郸郑州重庆长春长沙阿奈恩雷德蒙德青岛黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views(486) PDF downloads(52) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return