• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 57 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
LIU Yumei, CHEN Yun, ZHAO Congcong, XIONG Mingye. Vibration Evaluation and Reliability Analysis of High-Speed Train Transmission System Based on Kernel Density Estimator and Markov Model[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 783-790, 796. doi: 10.3969/j.issn.0258-2724.20200542
Citation: LIU Yumei, CHEN Yun, ZHAO Congcong, XIONG Mingye. Vibration Evaluation and Reliability Analysis of High-Speed Train Transmission System Based on Kernel Density Estimator and Markov Model[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 783-790, 796. doi: 10.3969/j.issn.0258-2724.20200542

Vibration Evaluation and Reliability Analysis of High-Speed Train Transmission System Based on Kernel Density Estimator and Markov Model

doi: 10.3969/j.issn.0258-2724.20200542
  • Received Date: 14 Aug 2020
  • Rev Recd Date: 25 Nov 2020
  • Publish Date: 02 Dec 2020
  • In order to study the vibration and reliability of the transmission system during the operation of a high-speed train, the vibration acceleration data of the key components of the CRH3 high-speed train transmission system are collected for a real vehicle and the kernel density estimator (KDE) method is used in statistical processing. Through data processing, an approximate curve of the probability density function of the vibration response of each key component in all directions is obtained, and the vibration of the key components of the transmission system is evaluated using the curve. The optimal confidence interval of the vibration acceleration of each key component is calculated using MATLAB. Two states of “safe” and “failure” are defined for the transmission system and key components of the transmission system, and a Weibull model of the proportional failure rate of the key components and the Markov state transition model of the drive train are established. The current state of the drive train is the initial state. Changes in the reliability of the transmission system are analyzed using the real-time failure rate and maintenance rate. The results show that the vertical vibration is strongest for the axle box bearings, gearboxes, and motor bearings in the drive train, and the vibration acceleration is concentrated in the range of 25 times, 20 times, and 10 times the acceleration of gravity, with a probability of 99.75%, respectively. It is in the range of 20.5026 times, 17.6712 times, 11.4693 times the gravitational acceleration. The optimal confidence interval for the vibration acceleration probability of each key component to be 99.75% is calculated, which provides a reference for the optimization of the system’s vibration monitoring threshold and fault evaluation. The failure rate and maintenance rate are the key factors affecting the state probability of the transmission system. An increase in the failure rate of approximately 30% reduces the state probability of the system by approximately 10%, whereas an increase in the maintenance rate from 0.05 to 0.10 increases the reliability of the system by approximately 20%.

     

  • loading
  • [1]
    许思思,黄冠华,姜海博,等. 高速列车齿轮箱振动烈度评价方法探讨[J]. 铁道技术监督,2017,45(11): 30-32. doi: 10.3969/j.issn.1006-9178.2017.11.010

    XU Sisi, HUANG Guanhua, JIANG Haibo, et al. Discussion on evaluation method of vibration intensity of gearbox of high speed train[J]. Railway Quality Control, 2017, 45(11): 30-32. doi: 10.3969/j.issn.1006-9178.2017.11.010
    [2]
    李梅林,李毅强,谢惠民,等. 车用发动机振动测试研究[J]. 湖南大学学报(自然科学版),2003,30(2): 42-44.

    LI Hailin, LI Yiqiang, XIE Huimin. Study on vehicle engine vibration test[J]. Journal of Hunan University (Natural Sciences), 2003, 30(2): 42-44.
    [3]
    邓晓宇. 高速列车齿轮传动系统动态特性仿真与评价方法研究[D]. 成都: 西南交通大学, 2016.
    [4]
    刘远龙. 核密度估计中的窗宽选择方法[D]. 合肥: 中国科学技术大学, 2013.
    [5]
    杨腾飞. 基于失效物理相关性的风电齿轮箱可靠性分[D]. 兰州: 兰州理工大学, 2017.4.
    [6]
    高延杰,杨永发,陈炯,等. 基于核密度估计算法的T100C列车转向架载荷谱统计研究[J]. 机械强度,2016,38(6): 1330-1334.

    GAO Yanjie, YANG Yongfa, CHEN Jong, et al. A research on load spectrum statistical analysis of T100C train bogie based on kernel density estimation algorithm[J]. Journal of Mechanical Strength, 2016, 38(6): 1330-1334.
    [7]
    王俊明,茹杨,陈瑜,等. 基于余弦核函数在Solve-the-Equation 方法下的核密度估计[J]. 哈尔滨理工大学学报,2016,12(1): 114-122.

    WANG Junming, RU Yang, CHEN Yu, et al. Solve-the-Equation kernel density estimation method based on cosine kernel function[J]. Journal of Harbin University of Science and Technology, 2016, 12(1): 114-122.
    [8]
    ZHAO X X, JUN Y. Kernel density estimation of traffic accidents in a network space[J]. Computers,Environment and Urban System, 2008(32): 396-406.
    [9]
    郑伟,朱洪磊,符锌砂,等. 基于核密度估计的交通流速度分布[J]. 公路工程,2018,43(2): 113-117. doi: 10.3969/j.issn.1674-0610.2018.02.021

    ZHENG Wei, ZHU Honglei, FU Xinsha, et al. Velocity distribution of traffic flow based on kernel density estimation[J]. Highway Engineering, 2018, 43(2): 113-117. doi: 10.3969/j.issn.1674-0610.2018.02.021
    [10]
    赵聪聪. 高速列车传动系统可靠性分析与评估[D]. 长春: 吉林大学, 2016: 24-25.
    [11]
    IEC. 铁路应用—机车车辆设备—冲击和振动实验: IEC61373—2010[P]. 2版. 日内瓦: [s.n.], 2010.
    [12]
    于敏,何正友,钱清泉. 基于Markov模型的可维修双机热备系统可靠性分析[J]. 计算机工程与设计,2009,30(8): 2040-2046.

    YU Min, HE Zhengyou, QIAN Qingquan. Reliability analysis of repairable hot stand-by redundant system based on Markov model[J]. Computer Engineering and Design, 2009, 30(8): 2040-2046.
    [13]
    丁锋,何正嘉,訾艳阳,等. 基于设备状态振动特征的比例障率模型可靠性评估[J]. 机械工程学报,2009,45(12): 95-100. doi: 10.3901/JME.2009.12.095

    DING Feng, HE Zhengjia, ZI Yanyang, et al. Reliability assessment based on equipment condition vibration feature using proportional hazards model[J]. Journal of Mechanical Engineering, 2009, 45(12): 95-100. doi: 10.3901/JME.2009.12.095
    [14]
    魏利胜,费敏锐. 基于马尔可夫模型的NCS可靠性分[J]. 工业仪表与自动化装置,2007,2(5): 6-8. doi: 10.3969/j.issn.1000-0682.2007.05.002

    WEI Lisheng, FEI Minrui. A reliability analysis of NCS based on the Markov model[J]. Industrial Instrumentation & Automation, 2007, 2(5): 6-8. doi: 10.3969/j.issn.1000-0682.2007.05.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article views(282) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return