• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 56 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
CUI Hongtao, CAO Ke, ZHANG Hu, CUI Xiao. Weather Classification in Traffic Scene Based on Joint Voting Network[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 579-586. doi: 10.3969/j.issn.0258-2724.20200084
Citation: CUI Hongtao, CAO Ke, ZHANG Hu, CUI Xiao. Weather Classification in Traffic Scene Based on Joint Voting Network[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 579-586. doi: 10.3969/j.issn.0258-2724.20200084

Weather Classification in Traffic Scene Based on Joint Voting Network

doi: 10.3969/j.issn.0258-2724.20200084
  • Received Date: 11 Mar 2020
  • Rev Recd Date: 11 May 2020
  • Available Online: 18 Jun 2020
  • Publish Date: 15 Jun 2021
  • Weather classification based on road monitoring images has become an important research topic in intelligent traffic system. With the application of convolutional neural network (CNN), image recognition has been greatly developed. However, the existing deep learning methods still face great challenges in weather recognition of complex traffic scenarios. A novel deep neural network (DNN) model based on joint voting framework is proposed to extract rich semantic features. The proposed model consists of two core modules: the second-order feature module based on channel and spatial attention mechanism and the joint voting classification module based on composite features, which can extract discriminant information from different weather images and improve the weather recognition performance in complex scenarios. Extensive experiments conducted on two benchmark weather classification datasets demonstrate that the proposed joint voting DNN outperforms the existing weather recognition method by 1.97%.

     

  • loading
  • 公安部交通管理局. 中华人民共和国道路交通事故统计年报(2010年度)[R]. 北京: 公安部交通管理局, 2011.
    ROSER M, MOOSMANN F. Classification of weather situations onsingle color images[C]//2008 IEEE Intelligent Vehicles Symposium. Eindhoven: IEEE, 2008: 798-803.
    YAN Xunshi, LUO Yupin, ZHENG Xiaoming. Weather recognition based on images captured by vision system in vehicle[C]//International Symposium on Neural Networks. Berlin, Heidelberg: Springer, 2009: 390-398.
    GEIGER A, LAUER M, URTASUN R. A generative model for 3d urban scene understanding from movable platforms[C]//2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2011: 1945-1952.
    ZHAO P, FANG T, XIAO J X, et al. Rectilinear parsing of architecture in urban environment[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 342-349.
    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664.99615.94
    DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005: 886-893
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
    LU C, LIN D, JIA J, et al. Two-class weather classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 3718-3725.
    KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems. [S.l.]: Curran Associates Inc, 2012: 1097-1105.
    SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2015: 1-9.
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
    HE K, ZHANG X, REN S, et al. Identity mappings in deep residual networks[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2016: 630-645.
    ELHOSEINY M, HUANG S, ELGAMMAL A. Weather classification with deep convolutional neural networks[C]//IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2015: 3349-3353
    LIN D, LU C, HUANG H, et al. RSCM:region selection and concurrency model for multi-class weather recognition[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4154-4167. doi: 10.1109/TIP.2017.2695883
    YU F, KOLTUN V, FUNKHOUSER T. Dilated residual networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 472-480.
    JADERBERG M, VEDALDI A, ZISSERMAN A. Speeding up convolutional neural networks with low rank expansions[J/OL]. Computer Science, 2014, 1: 1-15[2020-03-06]. https://arxiv.org/abs/1405.3866.
    CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 1251-1258.
    HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7132-7141.
    WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
    LI P, XIE J, WANG Q, et al. Is second-order information helpful for large-scale visual recognition?[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 2070-2078.
    RUSSAKOVSKY O, DENG J, SU H, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. doi: 10.1007/s11263-015-0816-y
    SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 618-626.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article views(466) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return