• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
CUI Hongtao, CAO Ke, ZHANG Hu, CUI Xiao. Weather Classification in Traffic Scene Based on Joint Voting Network[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 579-586. doi: 10.3969/j.issn.0258-2724.20200084
Citation: CUI Hongtao, CAO Ke, ZHANG Hu, CUI Xiao. Weather Classification in Traffic Scene Based on Joint Voting Network[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 579-586. doi: 10.3969/j.issn.0258-2724.20200084

Weather Classification in Traffic Scene Based on Joint Voting Network

doi: 10.3969/j.issn.0258-2724.20200084
  • Received Date: 11 Mar 2020
  • Rev Recd Date: 11 May 2020
  • Available Online: 18 Jun 2020
  • Publish Date: 15 Jun 2021
  • Weather classification based on road monitoring images has become an important research topic in intelligent traffic system. With the application of convolutional neural network (CNN), image recognition has been greatly developed. However, the existing deep learning methods still face great challenges in weather recognition of complex traffic scenarios. A novel deep neural network (DNN) model based on joint voting framework is proposed to extract rich semantic features. The proposed model consists of two core modules: the second-order feature module based on channel and spatial attention mechanism and the joint voting classification module based on composite features, which can extract discriminant information from different weather images and improve the weather recognition performance in complex scenarios. Extensive experiments conducted on two benchmark weather classification datasets demonstrate that the proposed joint voting DNN outperforms the existing weather recognition method by 1.97%.

     

  • 公安部交通管理局. 中华人民共和国道路交通事故统计年报(2010年度)[R]. 北京: 公安部交通管理局, 2011.
    ROSER M, MOOSMANN F. Classification of weather situations onsingle color images[C]//2008 IEEE Intelligent Vehicles Symposium. Eindhoven: IEEE, 2008: 798-803.
    YAN Xunshi, LUO Yupin, ZHENG Xiaoming. Weather recognition based on images captured by vision system in vehicle[C]//International Symposium on Neural Networks. Berlin, Heidelberg: Springer, 2009: 390-398.
    GEIGER A, LAUER M, URTASUN R. A generative model for 3d urban scene understanding from movable platforms[C]//2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2011: 1945-1952.
    ZHAO P, FANG T, XIAO J X, et al. Rectilinear parsing of architecture in urban environment[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 342-349.
    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664.99615.94
    DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005: 886-893
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
    LU C, LIN D, JIA J, et al. Two-class weather classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 3718-3725.
    KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems. [S.l.]: Curran Associates Inc, 2012: 1097-1105.
    SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2015: 1-9.
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
    HE K, ZHANG X, REN S, et al. Identity mappings in deep residual networks[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2016: 630-645.
    ELHOSEINY M, HUANG S, ELGAMMAL A. Weather classification with deep convolutional neural networks[C]//IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2015: 3349-3353
    LIN D, LU C, HUANG H, et al. RSCM:region selection and concurrency model for multi-class weather recognition[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4154-4167. doi: 10.1109/TIP.2017.2695883
    YU F, KOLTUN V, FUNKHOUSER T. Dilated residual networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 472-480.
    JADERBERG M, VEDALDI A, ZISSERMAN A. Speeding up convolutional neural networks with low rank expansions[J/OL]. Computer Science, 2014, 1: 1-15[2020-03-06]. https://arxiv.org/abs/1405.3866.
    CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 1251-1258.
    HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7132-7141.
    WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
    LI P, XIE J, WANG Q, et al. Is second-order information helpful for large-scale visual recognition?[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 2070-2078.
    RUSSAKOVSKY O, DENG J, SU H, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. doi: 10.1007/s11263-015-0816-y
    SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 618-626.
  • Relative Articles

    [1]YANG Yanchun, YAN Yan, WANG Ke. Infrared and Visible Image Fusion Based on Attention Mechanism and Illumination-Aware Network[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1204-1214. doi: 10.3969/j.issn.0258-2724.20230529
    [2]WANG Yanchen, YANG Fei, LI Rongling, ZHOU Tao. Influence of Location Frequency on Travel Mode Extraction Using Cellular Phone Data[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1158-1166. doi: 10.3969/j.issn.0258-2724.20220136
    [3]WU Dehua, PENG Rui, LIN Xiling. Hybrid Characteristics of Heterogeneous Traffic Flow in Intelligent Network[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 761-768. doi: 10.3969/j.issn.0258-2724.20210276
    [4]YANG Yueyi, WANG Lide, WANG Chong, WANG Huizhen, LI Ye. Fault Diagnosis Method Based on Deep Active Learning For MVB Network[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1342-1348, 1385. doi: 10.3969/j.issn.0258-2724.20210195
    [5]ZHANG Chunxiang, TANG Libo, GAO Xueyao. Word Sense Disambiguation Based on Semi-Supervised Convolutional Neural Networks[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 11-17, 27. doi: 10.3969/j.issn.0258-2724.20200105
    [6]JIANG Yangsheng, LIU Meng, WANG Sichen, GAO Kuan, YAO Zhihong. Trajectory Reconstruction for Traffic Flow Mixed withConnected Automated Vehicles Based on Car-Following Characteristics[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1135-1142. doi: 10.3969/j.issn.0258-2724.20200735
    [7]XING Yulong, WANG Jian, ZHAO Huibing, ZHU Linfu. Cab Signal Denoising Process Based on Fully Convolutional Networks[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 444-450. doi: 10.3969/j.issn.0258-2724.20191111
    [8]PENG Bo, TANG Ju, ZHANG Yuanyuan, CAI Xiaoyu, MENG Fanhe. Automatic Traffic State Recognition from Road Videos Based on 3D Convolution Neural Network[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 153-159. doi: 10.3969/j.issn.0258-2724.20191169
    [9]GUO Lie, GE Pingshu, WANG Xiao, WANG Dongxing. Visual Simultaneous Localization and Mapping Algorithm Based on Convolutional Neural Network to Optimize Loop Detection[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 706-712, 768. doi: 10.3969/j.issn.0258-2724.20190723
    [10]YUAN Fei, ZHAO Xuyan, WANG Yige, ZHAO Zhisheng. Smoke Recognition Algorithm Based on Lightweight Convolutional Neural Network[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1111-1116, 1132. doi: 10.3969/j.issn.0258-2724.20190777
    [11]HOU Jin, LÜ Zhiliang, XU Mao, WU Peijun, LIU Yuling, ZHANG Xiaoyu, CHENG Zeng. Combined Neural Networks Based on Deep Learning for Signal Detection in Aeronautical Communications[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 863-869, 878. doi: 10.3969/j.issn.0258-2724.20180164
    [12]ZHANG Ming, HAN Songchen, HUANG Linyuan. Air Traffic Flow Combinational Forecast Based on Double Gravity Model and Artificial Neural Network[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 764-770.
    [13]MENG Qingcheng, QI Xin, LI Qiao, BU Yizhi. Parameter Identification of Long-Span Cable-Stayed Bridge Based on Grey-Neural Network[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 704-709.
    [14]LI Ruimin, LU Huapu, SHI Qixin. ANN-Based Prediction of Turning Rate of Traffic Flows at Intersection[J]. Journal of Southwest Jiaotong University, 2007, 20(6): 743-747.
    [15]LI Xiangyong, TIAN Peng, JIANG Gefu. Comprehensive Evaluation Approach of Road Traffic Safety Based on Artificial Neural Network[J]. Journal of Southwest Jiaotong University, 2006, 19(4): 496-500.
    [16]LI Lin, LI Qiao, LIAO Hai-li. Identification of Static Coefficients of Bridge Section with Artificial Neural Network[J]. Journal of Southwest Jiaotong University, 2004, 17(6): 740-744.
    [17]LI Lin, LI Qiao. Identification of Aerodynamic Derivatives of Ideal Thin Plates with Artificial Neural Network[J]. Journal of Southwest Jiaotong University, 2003, 16(2): 159-163.
  • Cited by

    Periodical cited type(2)

    1. 封皓元,段勇. 基于深度迁移学习的天气图像识别. 电子测量与仪器学报. 2023(04): 223-230 .
    2. 刘立波,郗思宇,邓箴. 结合改进ConvNeXt网络与知识蒸馏的天气识别. 光学精密工程. 2023(14): 2123-2134 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0705101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 32.3 %FULLTEXT: 32.3 %META: 64.0 %META: 64.0 %PDF: 3.8 %PDF: 3.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.2 %其他: 4.2 %其他: 0.2 %其他: 0.2 %China: 0.4 %China: 0.4 %Korea Republic of: 0.4 %Korea Republic of: 0.4 %Seattle: 0.2 %Seattle: 0.2 %上海: 1.1 %上海: 1.1 %东莞: 0.2 %东莞: 0.2 %临汾: 0.4 %临汾: 0.4 %北京: 4.3 %北京: 4.3 %南京: 1.1 %南京: 1.1 %南通: 0.2 %南通: 0.2 %哥伦布: 0.4 %哥伦布: 0.4 %唐山: 0.2 %唐山: 0.2 %基希讷乌: 0.2 %基希讷乌: 0.2 %大连: 0.4 %大连: 0.4 %天津: 0.2 %天津: 0.2 %太原: 0.6 %太原: 0.6 %安康: 0.2 %安康: 0.2 %宣城: 0.4 %宣城: 0.4 %常州: 0.2 %常州: 0.2 %广州: 0.2 %广州: 0.2 %张家口: 2.3 %张家口: 2.3 %成都: 5.7 %成都: 5.7 %扬州: 0.6 %扬州: 0.6 %杭州: 1.3 %杭州: 1.3 %武汉: 1.1 %武汉: 1.1 %洛阳: 0.2 %洛阳: 0.2 %深圳: 0.2 %深圳: 0.2 %滨州: 0.2 %滨州: 0.2 %漯河: 2.3 %漯河: 2.3 %潮州: 0.2 %潮州: 0.2 %福州: 0.4 %福州: 0.4 %绍兴: 0.2 %绍兴: 0.2 %芒廷维尤: 22.1 %芒廷维尤: 22.1 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.6 %苏州: 0.6 %西宁: 42.6 %西宁: 42.6 %西安: 0.2 %西安: 0.2 %诺沃克: 0.4 %诺沃克: 0.4 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.1 %运城: 1.1 %遂宁: 0.8 %遂宁: 0.8 %郑州: 0.9 %郑州: 0.9 %镇江: 0.4 %镇江: 0.4 %长沙: 0.4 %长沙: 0.4 %其他其他ChinaKorea Republic ofSeattle上海东莞临汾北京南京南通哥伦布唐山基希讷乌大连天津太原安康宣城常州广州张家口成都扬州杭州武汉洛阳深圳滨州漯河潮州福州绍兴芒廷维尤芝加哥苏州西宁西安诺沃克贵阳运城遂宁郑州镇江长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article views(529) PDF downloads(21) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return