• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
WEI Xing, WANG Rongrong, WEN Zongyi, DAI Lijun, HU Zhe. Influence of Bolt Relaxation of High-Speed Railway Sound Barrier on Fatigue Life[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 373-380. doi: 10.3969/j.issn.0258-2724.20210060
Citation: HOU Jin, LÜ Zhiliang, XU Mao, WU Peijun, LIU Yuling, ZHANG Xiaoyu, CHENG Zeng. Combined Neural Networks Based on Deep Learning for Signal Detection in Aeronautical Communications[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 863-869, 878. doi: 10.3969/j.issn.0258-2724.20180164

Combined Neural Networks Based on Deep Learning for Signal Detection in Aeronautical Communications

doi: 10.3969/j.issn.0258-2724.20180164
  • Received Date: 10 Mar 2018
  • Rev Recd Date: 02 Jul 2018
  • Available Online: 08 Jul 2018
  • Publish Date: 01 Aug 2019
  • In order to increase the generality and accuracy of radio modulation recognition in complex radio propagation environment, a multiple feature combined convolutional network system based on deep learning is proposed. Carrier features were detected with front convolutional network in the first stage. Then, the signal filtered by the front CNN was converted into spectrograms with the proposed pre-process method. Finally, the lightweight backend convolutional network was designed to extract the time-frequency features of spectrograms. The networks, which run on TensorFlow, achieved 99.23% accuracy with real airport communication signals. The experiment indicates that the proposed networks could be applied in real-time airport radio detection.

     

  • 温欣. 基于决策树的调制模式及GNU Radio模块实现[D]. 哈尔滨: 哈尔滨工业大学, 2010
    LI Shiping, CHEN Fangchao, WANG Long. Modulation recognition algorithm of digital signal based on support vector machine[J]. Control and Decision Conference (CCDC), 2012, 229(5): 3326-3330.
    AHN W H, NAH S P, SEO B S. Automatic classification of digitally modulated signals based on k-nearest neighbor[J]. Lecture Notes in Electrical Engineering, 2015, 329(1): 63-69.
    WONG M L D, TING S K, NANDI A K. Naïve Bayes classification of adaptive broadband wireless modulation types with higher order cumulants[C]//International Conference on Signal Processing and Communication Systems. Gold Coast: [s.n.], 2009, 5(2): 1-5
    XU J L, SU Wei, ZHOU Mengchu. Distributed automatic modulation classification with multiple Sensors[J]. IEEE Sensor Journal, 2010, 10(11): 1779-1785. doi: 10.1109/JSEN.2010.2049487
    HELMY M O, ZAKI F W. Identification of linear dimensional digital modulation schemes via clustering algorithms[C]//International Conference on Computer Engineering & Systems. Cairo: [s.n.], 2009, 5(1): 358-390
    HARING L, CHEN Y, CZYLWIK A. Automatic modulation classification methods for wireless OFDM system in TDD mode[J]. IEEE Transaction on Communications, 2010, 58(9): 2480-2485. doi: 10.1109/TCOMM.2010.080310.090228
    O’SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]//International Conference on Engineering Applications of Neural Networks. Aberdeen: [s.n.], 2016, 6(1): 213-226
    O’SHEA T J, WEST N. Radio machine learning dataset generation with gnu radio[C]//Proceedings of the GNU Radio Conference. Boulder: [s.n.], 2016, 1(1): 69-74
    WEST N E, O’SHEA T J. Deep architectures for modulation recognition[C]//IEEE International Symposium on Dynamic Spectrum Access Networks. Baltimore: [s.n.], 2017: 1-6
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
    SIMONYAN K, ZISSERMAN A. Very deep convoluiotnal networks for large-scale image recognititon[DB/OL]. [2018-02-22]. https://arxiv.org/abs/1409.1556
    HUBEL D H, WIESEL T N. Receptive fields,binocular inter-action and functional architecture in the cat's visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154. doi: 10.1113/jphysiol.1962.sp006837
    FUKUSHIMA, K NEOCOGNITRON. A self organizing neural network model for a mechanism of pattern recognition un-affected by shift in position[J]. Biological Cybernetics, 1980, 36(4): 193-202. doi: 10.1007/BF00344251
    IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning. Lille: [s.n.], 2015, 33(1): 448-456
    SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//IEEE Conference on Computer Vision & Pattern Recognition. Las Vegas: IEEE, 2016, 26(1): 2818-2826
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision & Pattern Recognition. Las Vegas: IEEE, 2016, 26(1): 770-778
    LIN M, CHEN Q, YAN S. Network in network[DB/OL]. [2018-02-22]. https://arxiv.org/abs/1312.4400
    KRIZHEVSKY A, SUTSKEVER I, HINTON G. Imagenet classification with deep convolutional neural networks[C]//International Conference on Neural Information Processing Systems. Lake Tahoe: [s.n.], 2012, 60(2): 1097-1105
    SZEGEDY C, IOFFE S, VANHOUCKE V. Inception-v4, inception-resnet and the impact of residual connections on learning[C]// Thirty-First AAAI Conference on Artificial Intelligence. San Francisco: [s.n.], 2017: 936-940
  • Relative Articles

    [1]XU Qingyuan, LIN Qingteng, FANG Ziyun, LOU Ping, YANG Rongshan, CHEN Wei, ZHANG Ze. Theoretical Study on Fatigue Stress Spectrum of Longitudinal Connected Slab Track on Bridge[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 906-912. doi: 10.3969/j.issn.0258-2724.2018.05.005
    [2]YE Huawen, XU Xun, QIANG Shizhong, HOU Suwei. Fatigue Design Parameters for Orthotropic Steel Decks of Single Plane Cable-Stayed Bridges[J]. Journal of Southwest Jiaotong University, 2012, 25(3): 379-386. doi: 10.3969/j.issn.0258-2724.2012.03.005
    [3]JIN Hui, 2, LI Jing, LI Aiqun. Checking Calculation of Fatigue Strength for Cast Steel Joints of Offshore Tour Tower under Wave Loads[J]. Journal of Southwest Jiaotong University, 2010, 23(5): 692-697. doi: 10. 3969/ j. issn. 0258-2724.
    [4]MA Yanli, WANG Yaowu, PEI Yulong. Experimental Psychology Study on Relationship between Fatigue and Driving Time[J]. Journal of Southwest Jiaotong University, 2009, 22(4): 535-540.
    [5]YE Huawen, KÖ, NIG Christian, UMMENHOFER Thomas, QIANG Shizhong. Experimental Investigation of Fatigue Behavior of Tension Steel Plate Reinforced with Prestressed CFRP Laminates[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 823-829.
    [6]CHEN Lei, ZHANG Zimao. Goodman-Smith Diagram for Fatigue Reliability Design of Grade B Cast Wheel Steel[J]. Journal of Southwest Jiaotong University, 2006, 19(6): 705-708.
    [7]WAN Yi, DENG Bin, LI Huijie, TIAN Zhijun, KE Jian. Fatigue Reliability of Contact Wire[J]. Journal of Southwest Jiaotong University, 2006, 19(2): 214-217.
    [8]JINHui, WANGJin-nuo. Fatigue Reliability of Notched Parts from Viewpoint of Structural System[J]. Journal of Southwest Jiaotong University, 2003, 16(3): 294-296.
    [9]DAI Zhen-yu, GAO Qinq, CAIJie. Mesomechanics Analysis of Fatigue Damages[J]. Journal of Southwest Jiaotong University, 2001, 14(6): 575-577.
    [10]He Guoqiu, Chen Chengshu, Gao Qing. The Effect of Nitrogen on the Characteristic of Low-Cycle Fatigue of 316 Series Austenitic Stainless Steels[J]. Journal of Southwest Jiaotong University, 1999, 12(3): 343-348.
  • Cited by

    Periodical cited type(2)

    1. 张艳斌,沈诚,孙东洋,张继旺. 扭紧力矩对SWRM10K螺栓疲劳性能影响的研究. 机械制造与自动化. 2024(05): 27-32 .
    2. 胡杰,鄂林仲阳,唐蔡平. 基于无滑移接触的螺栓连接结构动力学建模方法及试验验证. 航天器环境工程. 2024(05): 538-544 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.8 %FULLTEXT: 27.8 %META: 64.5 %META: 64.5 %PDF: 7.7 %PDF: 7.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.5 %其他: 10.5 %其他: 0.5 %其他: 0.5 %三亚: 0.2 %三亚: 0.2 %上海: 0.9 %上海: 0.9 %中卫: 0.2 %中卫: 0.2 %临汾: 0.5 %临汾: 0.5 %临沂: 0.2 %临沂: 0.2 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %兰州: 0.3 %兰州: 0.3 %北京: 12.3 %北京: 12.3 %南京: 2.5 %南京: 2.5 %南充: 0.2 %南充: 0.2 %南昌: 0.8 %南昌: 0.8 %合肥: 0.2 %合肥: 0.2 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.5 %哥伦布: 0.5 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 0.9 %天津: 0.9 %宁波: 0.3 %宁波: 0.3 %安康: 0.5 %安康: 0.5 %宣城: 0.2 %宣城: 0.2 %常州: 0.2 %常州: 0.2 %平顶山: 0.5 %平顶山: 0.5 %延安: 0.2 %延安: 0.2 %张家口: 1.4 %张家口: 1.4 %徐州: 0.2 %徐州: 0.2 %悉尼: 0.3 %悉尼: 0.3 %成都: 2.6 %成都: 2.6 %扬州: 0.3 %扬州: 0.3 %揭阳: 0.3 %揭阳: 0.3 %昆明: 0.8 %昆明: 0.8 %株洲: 0.2 %株洲: 0.2 %格兰特县: 0.2 %格兰特县: 0.2 %榆林: 0.2 %榆林: 0.2 %武汉: 0.6 %武汉: 0.6 %江门: 0.2 %江门: 0.2 %沈阳: 0.5 %沈阳: 0.5 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.2 %济南: 0.2 %深圳: 0.5 %深圳: 0.5 %湖州: 0.2 %湖州: 0.2 %滁州: 0.5 %滁州: 0.5 %漯河: 0.5 %漯河: 0.5 %烟台: 0.2 %烟台: 0.2 %石家庄: 1.1 %石家庄: 1.1 %福州: 0.2 %福州: 0.2 %维尔纽斯: 0.3 %维尔纽斯: 0.3 %芒廷维尤: 13.5 %芒廷维尤: 13.5 %芝加哥: 0.8 %芝加哥: 0.8 %苏州: 0.2 %苏州: 0.2 %菏泽: 0.3 %菏泽: 0.3 %营口: 0.3 %营口: 0.3 %蚌埠: 0.2 %蚌埠: 0.2 %西宁: 34.3 %西宁: 34.3 %西安: 1.1 %西安: 1.1 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.8 %贵阳: 0.8 %运城: 0.8 %运城: 0.8 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.3 %郑州: 0.3 %重庆: 0.3 %重庆: 0.3 %长沙: 1.7 %长沙: 1.7 %隆德: 0.3 %隆德: 0.3 %青岛: 0.6 %青岛: 0.6 %首尔: 0.2 %首尔: 0.2 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %黄石: 0.2 %黄石: 0.2 %其他其他三亚上海中卫临汾临沂乌鲁木齐兰州北京南京南充南昌合肥哈尔滨哥伦布嘉兴天津宁波安康宣城常州平顶山延安张家口徐州悉尼成都扬州揭阳昆明株洲格兰特县榆林武汉江门沈阳洛阳济南深圳湖州滁州漯河烟台石家庄福州维尔纽斯芒廷维尤芝加哥苏州菏泽营口蚌埠西宁西安诺沃克贵阳运城邯郸郑州重庆长沙隆德青岛首尔香港特别行政区黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article views(472) PDF downloads(28) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return