Citation: | HOU Jin, LÜ Zhiliang, XU Mao, WU Peijun, LIU Yuling, ZHANG Xiaoyu, CHENG Zeng. Combined Neural Networks Based on Deep Learning for Signal Detection in Aeronautical Communications[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 863-869, 878. doi: 10.3969/j.issn.0258-2724.20180164 |
温欣. 基于决策树的调制模式及GNU Radio模块实现[D]. 哈尔滨: 哈尔滨工业大学, 2010
|
LI Shiping, CHEN Fangchao, WANG Long. Modulation recognition algorithm of digital signal based on support vector machine[J]. Control and Decision Conference (CCDC), 2012, 229(5): 3326-3330.
|
AHN W H, NAH S P, SEO B S. Automatic classification of digitally modulated signals based on k-nearest neighbor[J]. Lecture Notes in Electrical Engineering, 2015, 329(1): 63-69.
|
WONG M L D, TING S K, NANDI A K. Naïve Bayes classification of adaptive broadband wireless modulation types with higher order cumulants[C]//International Conference on Signal Processing and Communication Systems. Gold Coast: [s.n.], 2009, 5(2): 1-5
|
XU J L, SU Wei, ZHOU Mengchu. Distributed automatic modulation classification with multiple Sensors[J]. IEEE Sensor Journal, 2010, 10(11): 1779-1785. doi: 10.1109/JSEN.2010.2049487
|
HELMY M O, ZAKI F W. Identification of linear dimensional digital modulation schemes via clustering algorithms[C]//International Conference on Computer Engineering & Systems. Cairo: [s.n.], 2009, 5(1): 358-390
|
HARING L, CHEN Y, CZYLWIK A. Automatic modulation classification methods for wireless OFDM system in TDD mode[J]. IEEE Transaction on Communications, 2010, 58(9): 2480-2485. doi: 10.1109/TCOMM.2010.080310.090228
|
O’SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]//International Conference on Engineering Applications of Neural Networks. Aberdeen: [s.n.], 2016, 6(1): 213-226
|
O’SHEA T J, WEST N. Radio machine learning dataset generation with gnu radio[C]//Proceedings of the GNU Radio Conference. Boulder: [s.n.], 2016, 1(1): 69-74
|
WEST N E, O’SHEA T J. Deep architectures for modulation recognition[C]//IEEE International Symposium on Dynamic Spectrum Access Networks. Baltimore: [s.n.], 2017: 1-6
|
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
|
SIMONYAN K, ZISSERMAN A. Very deep convoluiotnal networks for large-scale image recognititon[DB/OL]. [2018-02-22]. https://arxiv.org/abs/1409.1556
|
HUBEL D H, WIESEL T N. Receptive fields,binocular inter-action and functional architecture in the cat's visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154. doi: 10.1113/jphysiol.1962.sp006837
|
FUKUSHIMA, K NEOCOGNITRON. A self organizing neural network model for a mechanism of pattern recognition un-affected by shift in position[J]. Biological Cybernetics, 1980, 36(4): 193-202. doi: 10.1007/BF00344251
|
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning. Lille: [s.n.], 2015, 33(1): 448-456
|
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//IEEE Conference on Computer Vision & Pattern Recognition. Las Vegas: IEEE, 2016, 26(1): 2818-2826
|
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision & Pattern Recognition. Las Vegas: IEEE, 2016, 26(1): 770-778
|
LIN M, CHEN Q, YAN S. Network in network[DB/OL]. [2018-02-22]. https://arxiv.org/abs/1312.4400
|
KRIZHEVSKY A, SUTSKEVER I, HINTON G. Imagenet classification with deep convolutional neural networks[C]//International Conference on Neural Information Processing Systems. Lake Tahoe: [s.n.], 2012, 60(2): 1097-1105
|
SZEGEDY C, IOFFE S, VANHOUCKE V. Inception-v4, inception-resnet and the impact of residual connections on learning[C]// Thirty-First AAAI Conference on Artificial Intelligence. San Francisco: [s.n.], 2017: 936-940
|