• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 55 Issue 5
Oct.  2020
Turn off MathJax
Article Contents
YUAN Fei, ZHAO Xuyan, WANG Yige, ZHAO Zhisheng. Smoke Recognition Algorithm Based on Lightweight Convolutional Neural Network[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1111-1116, 1132. doi: 10.3969/j.issn.0258-2724.20190777
Citation: YUAN Fei, ZHAO Xuyan, WANG Yige, ZHAO Zhisheng. Smoke Recognition Algorithm Based on Lightweight Convolutional Neural Network[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1111-1116, 1132. doi: 10.3969/j.issn.0258-2724.20190777

Smoke Recognition Algorithm Based on Lightweight Convolutional Neural Network

doi: 10.3969/j.issn.0258-2724.20190777
  • Received Date: 07 Aug 2019
  • Rev Recd Date: 19 Nov 2019
  • Available Online: 07 Jul 2020
  • Publish Date: 01 Oct 2020
  • As smoke images are ambiguous, and the background is complex and variable, it is difficult to capture the effective features, resulting in high false positive rates and false negative rates. In addition, the deep convolutional neural network has a complicated structure and many parameters, and it is difficult to control the calculation time within one millisecond, which becomes a major problem for real-time fire warning. In order to deal with these obstacles, a lightweight convolutional neural network SInception (sequeeze-and-excitation inception) is proposed on the basis of four Inception structures, which significantly reduces the number of network parameters and calculation amount. It adds SE Block (sequeeze-and-excitation block) for smoke so that features are redistributed to make them more representative of smoke images. In order to avoid over-fitting due to insufficient training samples, for the data enhancement techniques on the original dataset and generative adversarial network are used to generate more training samples. Subsequently a strategy of integrating the priori features of dark channels is used in experiments. Finally, the network raises the accuracy rate to 99.65%, while for the dataset GAN-Aug-YUAN it reduces the false alarm rate to 0, and the calculation time is only 0.26 ms.

     

  • loading
  • GUBBI J, MARUSIC S, PALANISWAMI M. Smoke detection in video using wavelets and support vector machines[J]. Fire Safety Journal, 2009, 44(8): 1110-1115. doi: 10.1016/j.firesaf.2009.08.003
    KO B C, KWAK J Y, NAM J Y. Wildfire smoke detection using temporospatial features and random forest classifiers[J]. Optical Engineering, 2012, 51(1): 017208.1-017208.10. doi: 10.1117/1.OE.51.1.017208
    YUAN F. Video-based smoke detection with histogram sequence of LBP and LBPV pyramids[J]. Fire Safety Journal, 2011, 46(3): 132-139. doi: 10.1016/j.firesaf.2011.01.001
    YUAN F, SHI J, XIA X, et al. High-order local ternary patterns with locality preserving projection for smoke detection and image classification[J]. Information Sciences, 2016, 372(C): 225-240.
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2014: 580-587.
    LAN Z, ZHU Y, HAUPTMANN A G, et al. Deep local video feature for action recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. [S.l.]: IEEE, 2017: 1-7.
    FRIZZI S, KAABI R, BOUCHOUICHA M, et al. Convolutional neural network for video fire and smoke detection[C]//Proceedings of the IECON-42nd Annual Conference of the IEEE Industrial Electronics Society. [S.l.]: IEEE, 2016: 877-882.
    MUHAMMAD K, AHMAD J, MEHMOOD I, et al. Convolutional neural networks based fire detection in surveillance videos[J]. IEEE Access, 2018, 6: 18174-18183. doi: 10.1109/ACCESS.2018.2812835
    HE K, SUN J, TANG X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. doi: 10.1109/TPAMI.2010.168
    GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems. Montreal: [s.n.], 2014: 2672-2680.
    RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J/OL]. Computer Science: Machine Learning, 2015: 1511.06434.1-1511.06434.16, [2019-08-22]. https://arxiv.org/abs/1511.06434
    SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2016: 2818-2826.
    SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2015: 1-9.
    IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [J/OL]. Computer Science: Machine Learning, 2015: 1502.03167.1-1502.03167.10, [2019-08-22]. https://arxiv.org/abs/1502.03167.
    HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2018: 7132-7141.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article views(639) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return