Citation: | YUAN Fei, ZHAO Xuyan, WANG Yige, ZHAO Zhisheng. Smoke Recognition Algorithm Based on Lightweight Convolutional Neural Network[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1111-1116, 1132. doi: 10.3969/j.issn.0258-2724.20190777 |
GUBBI J, MARUSIC S, PALANISWAMI M. Smoke detection in video using wavelets and support vector machines[J]. Fire Safety Journal, 2009, 44(8): 1110-1115. doi: 10.1016/j.firesaf.2009.08.003
|
KO B C, KWAK J Y, NAM J Y. Wildfire smoke detection using temporospatial features and random forest classifiers[J]. Optical Engineering, 2012, 51(1): 017208.1-017208.10. doi: 10.1117/1.OE.51.1.017208
|
YUAN F. Video-based smoke detection with histogram sequence of LBP and LBPV pyramids[J]. Fire Safety Journal, 2011, 46(3): 132-139. doi: 10.1016/j.firesaf.2011.01.001
|
YUAN F, SHI J, XIA X, et al. High-order local ternary patterns with locality preserving projection for smoke detection and image classification[J]. Information Sciences, 2016, 372(C): 225-240.
|
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2014: 580-587.
|
LAN Z, ZHU Y, HAUPTMANN A G, et al. Deep local video feature for action recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. [S.l.]: IEEE, 2017: 1-7.
|
FRIZZI S, KAABI R, BOUCHOUICHA M, et al. Convolutional neural network for video fire and smoke detection[C]//Proceedings of the IECON-42nd Annual Conference of the IEEE Industrial Electronics Society. [S.l.]: IEEE, 2016: 877-882.
|
MUHAMMAD K, AHMAD J, MEHMOOD I, et al. Convolutional neural networks based fire detection in surveillance videos[J]. IEEE Access, 2018, 6: 18174-18183. doi: 10.1109/ACCESS.2018.2812835
|
HE K, SUN J, TANG X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. doi: 10.1109/TPAMI.2010.168
|
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems. Montreal: [s.n.], 2014: 2672-2680.
|
RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J/OL]. Computer Science: Machine Learning, 2015: 1511.06434.1-1511.06434.16, [2019-08-22]. https://arxiv.org/abs/1511.06434
|
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2016: 2818-2826.
|
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2015: 1-9.
|
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [J/OL]. Computer Science: Machine Learning, 2015: 1502.03167.1-1502.03167.10, [2019-08-22]. https://arxiv.org/abs/1502.03167.
|
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2018: 7132-7141.
|
[1] | BAO Yanyan, YANG Guangze, CHEN Wei, FENG Tingna. Voiceprint Recognition of 750 kV Transformer and Pin-Plate Discharge Aliasing Signals Based on Sparse Representation Theory and Convolutional Neural Network[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230177 |
[2] | LI Linchao, ZHONG Liangjian, SU Qing, REN Lu, DU Bowen. Fine Urban Land Use Identification Based on Fusion of Multi-source Data[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230296 |
[3] | ZHANG Hong, JIANG Xiaogang, ZHU Zhiwei, XIA Runchuan, ZHOU Jianting. Review on Intelligent Image Recognition of Apparent Diseases of Stay Cable[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 10-26. doi: 10.3969/j.issn.0258-2724.20220647 |
[4] | XIE Mingzhi, FAN Dingmeng, JIANG Zhipeng, DENG Fei, WANG Kun, HAN Chen, YANG Yongqing. Research Status and Prospects of Computer Vision-Based Crack Detection of Concrete Structure[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240115 |
[5] | LIU Yuekai, GAO Hongli, GUO Liang, YOU Zhichao, LI Shichao. In-situ Roughness Evaluation of Milling Machined Surface Based on Lightweight Deep Convolutional Neural Network[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 193-200. doi: 10.3969/j.issn.0258-2724.20210959 |
[6] | YANG Jun, GAO Zhiming, LI Jintai, ZHANG Chen. Correspondence Calculation of Three-Dimensional Point Cloud Model Based on Attention Mechanism[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1184-1193. doi: 10.3969/j.issn.0258-2724.20220682 |
[7] | YANG bin, HU Jinming, ZHANG Qilin, WANG Congjun. Location Information Perception of Onsite Construction Crew Based on Person Re-identification[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230125 |
[8] | PAN Lei, GUO Yushi, LI Hengchao, WANG Weiye, LI Zechen, MA Tianyu. SAR Image Generation Method via PCGAN for Ship Detection[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 547-555. doi: 10.3969/j.issn.0258-2724.20210630 |
[9] | WANG Yaodong, ZHU Liqiang, YU Zujun, SHI Hongmei, SHE Changmei. Intelligent Tunnel Crack Recognition Based on Automatic Sample Labeling[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1001-1008, 1036. doi: 10.3969/j.issn.0258-2724.20210092 |
[10] | YUE Chuan, WANG Lide, YAN Haipeng. Attack-Sample Generation Method for Train Communication Network Under Few-Shot Condition[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1277-1285. doi: 10.3969/j.issn.0258-2724.20210557 |
[11] | LI Zechen, LI Hengchao, HU Wenshuai, YANG Jinyu, HUA Zexi. Masked Face Detection Model Based on Multi-scale Attention-Driven Faster R-CNN[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1002-1010. doi: 10.3969/j.issn.0258-2724.20210017 |
[12] | PENG Bo, TANG Ju, ZHANG Yuanyuan, CAI Xiaoyu, MENG Fanhe. Automatic Traffic State Recognition from Road Videos Based on 3D Convolution Neural Network[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 153-159. doi: 10.3969/j.issn.0258-2724.20191169 |
[13] | TIAN Sheng, ZHANG Jianfeng, ZHANG Yutian, XU Kai. Lane Detection Algorithm Based on Dilated Convolution Pyramid Network[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 386-392, 416. doi: 10.3969/j.issn.0258-2724.20181026 |
[14] | HOU Jin, LÜ Zhiliang, XU Mao, WU Peijun, LIU Yuling, ZHANG Xiaoyu, CHENG Zeng. Combined Neural Networks Based on Deep Learning for Signal Detection in Aeronautical Communications[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 863-869, 878. doi: 10.3969/j.issn.0258-2724.20180164 |
[15] | XIANG Yu, CONG Deming, ZHANG Yang, YUAN Fei. Two-Stream Neural Network Fusion Model for Highway Fog Detection[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 173-179. doi: 10.3969/j.issn.0258-2724.20180205 |
[16] | WANG De-Hui, YUAN Zhong-Fan, FAN Qiang-Wen. Planar Angle Measurement Based on Computer Vision[J]. Journal of Southwest Jiaotong University, 2010, 23(5): 775-780. doi: 10. 3969/ j. issn. 0258-2724. |
1. | 罗文慧,蔡凤田,吴初娜,夏鸿文,孟兴凯. 基于文本挖掘的道路运输安全风险源辨识模型. 西南交通大学学报. 2021(01): 147-152 . ![]() | |
2. | 张天琪,杨伟东,张姣姣,彭凯. 视频车辆黑烟检测算法研究进展. 中国图象图形学报. 2021(02): 316-333 . ![]() | |
3. | 谢春思,刘志赢,桑雨. 基于特征匹配的舰载对陆导弹目标识别模型. 系统工程与电子技术. 2021(08): 2244-2253 . ![]() |