• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
YUAN Fei, ZHAO Xuyan, WANG Yige, ZHAO Zhisheng. Smoke Recognition Algorithm Based on Lightweight Convolutional Neural Network[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1111-1116, 1132. doi: 10.3969/j.issn.0258-2724.20190777
Citation: YUAN Fei, ZHAO Xuyan, WANG Yige, ZHAO Zhisheng. Smoke Recognition Algorithm Based on Lightweight Convolutional Neural Network[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1111-1116, 1132. doi: 10.3969/j.issn.0258-2724.20190777

Smoke Recognition Algorithm Based on Lightweight Convolutional Neural Network

doi: 10.3969/j.issn.0258-2724.20190777
  • Received Date: 07 Aug 2019
  • Rev Recd Date: 19 Nov 2019
  • Available Online: 07 Jul 2020
  • Publish Date: 01 Oct 2020
  • As smoke images are ambiguous, and the background is complex and variable, it is difficult to capture the effective features, resulting in high false positive rates and false negative rates. In addition, the deep convolutional neural network has a complicated structure and many parameters, and it is difficult to control the calculation time within one millisecond, which becomes a major problem for real-time fire warning. In order to deal with these obstacles, a lightweight convolutional neural network SInception (sequeeze-and-excitation inception) is proposed on the basis of four Inception structures, which significantly reduces the number of network parameters and calculation amount. It adds SE Block (sequeeze-and-excitation block) for smoke so that features are redistributed to make them more representative of smoke images. In order to avoid over-fitting due to insufficient training samples, for the data enhancement techniques on the original dataset and generative adversarial network are used to generate more training samples. Subsequently a strategy of integrating the priori features of dark channels is used in experiments. Finally, the network raises the accuracy rate to 99.65%, while for the dataset GAN-Aug-YUAN it reduces the false alarm rate to 0, and the calculation time is only 0.26 ms.

     

  • GUBBI J, MARUSIC S, PALANISWAMI M. Smoke detection in video using wavelets and support vector machines[J]. Fire Safety Journal, 2009, 44(8): 1110-1115. doi: 10.1016/j.firesaf.2009.08.003
    KO B C, KWAK J Y, NAM J Y. Wildfire smoke detection using temporospatial features and random forest classifiers[J]. Optical Engineering, 2012, 51(1): 017208.1-017208.10. doi: 10.1117/1.OE.51.1.017208
    YUAN F. Video-based smoke detection with histogram sequence of LBP and LBPV pyramids[J]. Fire Safety Journal, 2011, 46(3): 132-139. doi: 10.1016/j.firesaf.2011.01.001
    YUAN F, SHI J, XIA X, et al. High-order local ternary patterns with locality preserving projection for smoke detection and image classification[J]. Information Sciences, 2016, 372(C): 225-240.
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2014: 580-587.
    LAN Z, ZHU Y, HAUPTMANN A G, et al. Deep local video feature for action recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. [S.l.]: IEEE, 2017: 1-7.
    FRIZZI S, KAABI R, BOUCHOUICHA M, et al. Convolutional neural network for video fire and smoke detection[C]//Proceedings of the IECON-42nd Annual Conference of the IEEE Industrial Electronics Society. [S.l.]: IEEE, 2016: 877-882.
    MUHAMMAD K, AHMAD J, MEHMOOD I, et al. Convolutional neural networks based fire detection in surveillance videos[J]. IEEE Access, 2018, 6: 18174-18183. doi: 10.1109/ACCESS.2018.2812835
    HE K, SUN J, TANG X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. doi: 10.1109/TPAMI.2010.168
    GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems. Montreal: [s.n.], 2014: 2672-2680.
    RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J/OL]. Computer Science: Machine Learning, 2015: 1511.06434.1-1511.06434.16, [2019-08-22]. https://arxiv.org/abs/1511.06434
    SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2016: 2818-2826.
    SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2015: 1-9.
    IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [J/OL]. Computer Science: Machine Learning, 2015: 1502.03167.1-1502.03167.10, [2019-08-22]. https://arxiv.org/abs/1502.03167.
    HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2018: 7132-7141.
  • Relative Articles

    [1]BAO Yanyan, YANG Guangze, CHEN Wei, FENG Tingna. Voiceprint Recognition of 750 kV Transformer and Pin-Plate Discharge Aliasing Signals Based on Sparse Representation Theory and Convolutional Neural Network[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230177
    [2]LI Linchao, ZHONG Liangjian, SU Qing, REN Lu, DU Bowen. Fine Urban Land Use Identification Based on Fusion of Multi-source Data[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230296
    [3]ZHANG Hong, JIANG Xiaogang, ZHU Zhiwei, XIA Runchuan, ZHOU Jianting. Review on Intelligent Image Recognition of Apparent Diseases of Stay Cable[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 10-26. doi: 10.3969/j.issn.0258-2724.20220647
    [4]XIE Mingzhi, FAN Dingmeng, JIANG Zhipeng, DENG Fei, WANG Kun, HAN Chen, YANG Yongqing. Research Status and Prospects of Computer Vision-Based Crack Detection of Concrete Structure[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240115
    [5]LIU Yuekai, GAO Hongli, GUO Liang, YOU Zhichao, LI Shichao. In-situ Roughness Evaluation of Milling Machined Surface Based on Lightweight Deep Convolutional Neural Network[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 193-200. doi: 10.3969/j.issn.0258-2724.20210959
    [6]YANG Jun, GAO Zhiming, LI Jintai, ZHANG Chen. Correspondence Calculation of Three-Dimensional Point Cloud Model Based on Attention Mechanism[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1184-1193. doi: 10.3969/j.issn.0258-2724.20220682
    [7]YANG bin, HU Jinming, ZHANG Qilin, WANG Congjun. Location Information Perception of Onsite Construction Crew Based on Person Re-identification[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230125
    [8]PAN Lei, GUO Yushi, LI Hengchao, WANG Weiye, LI Zechen, MA Tianyu. SAR Image Generation Method via PCGAN for Ship Detection[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 547-555. doi: 10.3969/j.issn.0258-2724.20210630
    [9]WANG Yaodong, ZHU Liqiang, YU Zujun, SHI Hongmei, SHE Changmei. Intelligent Tunnel Crack Recognition Based on Automatic Sample Labeling[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1001-1008, 1036. doi: 10.3969/j.issn.0258-2724.20210092
    [10]YUE Chuan, WANG Lide, YAN Haipeng. Attack-Sample Generation Method for Train Communication Network Under Few-Shot Condition[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1277-1285. doi: 10.3969/j.issn.0258-2724.20210557
    [11]LI Zechen, LI Hengchao, HU Wenshuai, YANG Jinyu, HUA Zexi. Masked Face Detection Model Based on Multi-scale Attention-Driven Faster R-CNN[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1002-1010. doi: 10.3969/j.issn.0258-2724.20210017
    [12]PENG Bo, TANG Ju, ZHANG Yuanyuan, CAI Xiaoyu, MENG Fanhe. Automatic Traffic State Recognition from Road Videos Based on 3D Convolution Neural Network[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 153-159. doi: 10.3969/j.issn.0258-2724.20191169
    [13]TIAN Sheng, ZHANG Jianfeng, ZHANG Yutian, XU Kai. Lane Detection Algorithm Based on Dilated Convolution Pyramid Network[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 386-392, 416. doi: 10.3969/j.issn.0258-2724.20181026
    [14]HOU Jin, LÜ Zhiliang, XU Mao, WU Peijun, LIU Yuling, ZHANG Xiaoyu, CHENG Zeng. Combined Neural Networks Based on Deep Learning for Signal Detection in Aeronautical Communications[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 863-869, 878. doi: 10.3969/j.issn.0258-2724.20180164
    [15]XIANG Yu, CONG Deming, ZHANG Yang, YUAN Fei. Two-Stream Neural Network Fusion Model for Highway Fog Detection[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 173-179. doi: 10.3969/j.issn.0258-2724.20180205
    [16]WANG De-Hui, YUAN Zhong-Fan, FAN Qiang-Wen. Planar Angle Measurement Based on Computer Vision[J]. Journal of Southwest Jiaotong University, 2010, 23(5): 775-780. doi: 10. 3969/ j. issn. 0258-2724.
  • Cited by

    Periodical cited type(3)

    1. 罗文慧,蔡凤田,吴初娜,夏鸿文,孟兴凯. 基于文本挖掘的道路运输安全风险源辨识模型. 西南交通大学学报. 2021(01): 147-152 . 本站查看
    2. 张天琪,杨伟东,张姣姣,彭凯. 视频车辆黑烟检测算法研究进展. 中国图象图形学报. 2021(02): 316-333 .
    3. 谢春思,刘志赢,桑雨. 基于特征匹配的舰载对陆导弹目标识别模型. 系统工程与电子技术. 2021(08): 2244-2253 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 49.3 %FULLTEXT: 49.3 %META: 45.5 %META: 45.5 %PDF: 5.2 %PDF: 5.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.8 %其他: 7.8 %Central District: 0.6 %Central District: 0.6 %[]: 0.3 %[]: 0.3 %上海: 1.0 %上海: 1.0 %东莞: 1.0 %东莞: 1.0 %临汾: 0.3 %临汾: 0.3 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %兰州: 0.1 %兰州: 0.1 %北京: 5.0 %北京: 5.0 %十堰: 0.1 %十堰: 0.1 %南京: 1.0 %南京: 1.0 %南昌: 0.4 %南昌: 0.4 %南通: 0.4 %南通: 0.4 %合肥: 0.8 %合肥: 0.8 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.6 %哥伦布: 0.6 %嘉兴: 0.3 %嘉兴: 0.3 %大连: 0.8 %大连: 0.8 %天津: 1.0 %天津: 1.0 %太原: 0.1 %太原: 0.1 %宁波: 0.1 %宁波: 0.1 %宣城: 0.1 %宣城: 0.1 %广州: 0.6 %广州: 0.6 %张家口: 1.8 %张家口: 1.8 %悉尼: 0.1 %悉尼: 0.1 %成都: 2.1 %成都: 2.1 %扬州: 0.6 %扬州: 0.6 %日照: 0.1 %日照: 0.1 %昆明: 0.3 %昆明: 0.3 %杭州: 2.7 %杭州: 2.7 %松原: 0.3 %松原: 0.3 %武汉: 0.6 %武汉: 0.6 %池州: 0.3 %池州: 0.3 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.7 %洛阳: 0.7 %济南: 0.3 %济南: 0.3 %淮北: 0.1 %淮北: 0.1 %深圳: 0.1 %深圳: 0.1 %温州: 0.3 %温州: 0.3 %漯河: 0.7 %漯河: 0.7 %玉林: 2.0 %玉林: 2.0 %石家庄: 0.6 %石家庄: 0.6 %绍兴: 0.4 %绍兴: 0.4 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 24.0 %芒廷维尤: 24.0 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.4 %苏州: 0.4 %西宁: 29.6 %西宁: 29.6 %西安: 0.4 %西安: 0.4 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.7 %运城: 0.7 %郑州: 1.0 %郑州: 1.0 %重庆: 0.8 %重庆: 0.8 %金华: 0.1 %金华: 0.1 %金昌: 0.3 %金昌: 0.3 %长春: 0.1 %长春: 0.1 %长沙: 3.2 %长沙: 3.2 %青岛: 0.6 %青岛: 0.6 %香港特别行政区: 0.6 %香港特别行政区: 0.6 %黎刹省: 0.3 %黎刹省: 0.3 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他Central District[]上海东莞临汾乌鲁木齐兰州北京十堰南京南昌南通合肥哈尔滨哥伦布嘉兴大连天津太原宁波宣城广州张家口悉尼成都扬州日照昆明杭州松原武汉池州沈阳洛阳济南淮北深圳温州漯河玉林石家庄绍兴绵阳芒廷维尤芝加哥苏州西宁西安贵阳运城郑州重庆金华金昌长春长沙青岛香港特别行政区黎刹省齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article views(697) PDF downloads(40) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return