• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
XING Yulong, WANG Jian, ZHAO Huibing, ZHU Linfu. Cab Signal Denoising Process Based on Fully Convolutional Networks[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 444-450. doi: 10.3969/j.issn.0258-2724.20191111
Citation: XING Yulong, WANG Jian, ZHAO Huibing, ZHU Linfu. Cab Signal Denoising Process Based on Fully Convolutional Networks[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 444-450. doi: 10.3969/j.issn.0258-2724.20191111

Cab Signal Denoising Process Based on Fully Convolutional Networks

doi: 10.3969/j.issn.0258-2724.20191111
  • Received Date: 18 Nov 2019
  • Rev Recd Date: 18 May 2020
  • Available Online: 11 Jan 2021
  • Publish Date: 15 Apr 2021
  • Since cab signals extract information from track circuits as the running token, its decoding performance has a direct impact on the reliability and security of train operation control system. However, as it is inevitable that a lot of noise and interference will mix into the cab signal during operation, it is necessary to denoise before decoding in order to improve demodulation accuracy. To this end, a raw waveform-based fully convolutional network (FCN) for denoising is proposed in an end-to-end manner, which denoises the cab signal in time domain directly and improves the signal-to-noise ratio (SNR). This proposed network is validated through simulation and measured data. The experimental results show that compared with the traditional spectrum-based denoising methods, this method has a more significant effect on in-band interference; FCN can improve the SNR of cab signals by 8~14 dB and effectively reduce the in-band interference.

     

  • 邱宽民. JT1-CZ2000型机车信号车载系统[M]. 北京: 中国铁道出版社, 2010: 1-12.
    ZHAO Linhai, LI Zhankui, LIU Weining. The compensation capacitors fault detection method of jointless track circuit based on DBWT and WR[C]//IEEE International Conference on Intelligent Computing & Intelligent Systems. Shanghai: IEEE, 2009: 875-879.
    剌博. 基于EMD降噪的轨道移频信号检测算法研究[D]. 西安: 西安理工大学, 2014.
    轩春霞,王小敏,杨扬,等. 基于稀疏分解的轨道移频信号降噪算法研究[J]. 计算机测量与控制,2014,22(9): 2870-2874. doi: 10.3969/j.issn.1671-4598.2014.09.048

    XUAN Chunxia, WANG Xiaomin, YANG Yang, et al. Denoising algorithm for track circuit frequency:shift signal based on sparse decomposition[J]. Computer Measurement & Control, 2014, 22(9): 2870-2874. doi: 10.3969/j.issn.1671-4598.2014.09.048
    NAIK D C, MURTHY A S, NUTHAKKI R. Modified magnitude spectral subtraction methods for speech enhancement[C]//2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques(ICEECCOT). Mysuru: [s.n.], 2017: 274-279.
    EPHRAIM Y, MALAH D. Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, 32(6): 1109-1121.
    SCALART P, FILHO J V. Speech enhancement based on a priori signal to noise estimation[C]//IEEE International Conference on Acoustics. Atlanta: IEEE, 1996: 629-632.
    IBARROLA F J, DI PERSIA L, SPIES R D. A Bayesian approach to convolutive nonnegative matrix factorization for blind speech dereverberation[J]. Signal Processing, 2018, 151(4): 89-98.
    HOU J C, WANG S S, LAI Y H, et al. Audio-visual speech enhancement using multimodal deep convolutional neural networks[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 2(2): 117-128.
    PALAZ D, COLLOBERT R, DOSS M M. Estimating phoneme class conditional probabilities from raw speech signal using convolutional neural networks[C]//14th Annual Conference of the International Speech Communication Association. Lyon: Interspeech, 2013: 1765-1769.
    OORD A V D, DIELEMAN S, ZEN H, et al. WaveNet: a generative model for raw audio[J]. Computer Science, 2016, 1: 1-15.
    FU S W, WANG T W, TSAO Y, et al. End-to-end waveform utterance enhancement for direct evaluation metrics optimization by fully convolutional neural networks[J]. IEEE/ACM Transactions on Audio Speech & Language Processing, 2018, 26(9): 1570-1584.
    赵自信. ZPW—2000A无绝缘移频自动闭塞系统的技术综述[J]. 铁路通信信号工程技术, 2003, 2003(增刊1): 12-19.

    ZHAO Zixin. A review of ZPW-2000 automatic block with jointless frequency-shift system[J]. Railway Signalling & Communication Engineering, 2003, 2003(S1): 12-19.
    中华人民共和国铁道部. ZPW-2000轨道电路技术条件: TB/T 3206—2008[S]. 北京: 中国铁道出版社, 2008
    LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine, 2015, 39(4): 640-651.
    THAKKAR V, TEWARY S, CHAKRABORTY C.Batch normalization in convolutional neural networks: a comparative study with CIFAR-10 data[C]//2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT). Kolkata: [s.n.], 2018: 1-5.
    ZHANG Yudong, PAN Chichun, SUN Junding, et al. Multiple sclerosis identification by convolutional neural network with dropout and parametric ReLU[J]. Journal of Computational Science, 2018, 28(9): 1-10.
  • Relative Articles

    [1]LI Hongzhe, YAN Lianshan, CHEN Jianyi, LI Saifei, XU Sirun. Risk Assessment Method of High-Speed Railway Signal Systems Based on Threat Analysis[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1334-1341. doi: 10.3969/j.issn.0258-2724.20210113
    [2]LI Yao, ZHANG Xiaoxia, GUO Jin, ZHANG Yadong. Modeling Method for Testing Railway Signal System Software[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 392-400, 424. doi: 10.3969/j.issn.0258-2724.20200530
    [3]RAO Chang, LI Nan, ZHANG Yadong, GUO Jin, LI Yao. Combinatorial Test Sequence Set Reduction Approach for Railway Signaling Safety-Critical Software[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 596-603. doi: 10.3969/j.issn.0258-2724.20190157
    [4]LI Saifei, YAN Lianshan, GUO Wei, GUO Jin, CHEN Jianyi, PAN Wei, FANG Xuming. Analysis of Network Security for Chinese High-Speed Railway Signal Systems and Proposal of Unified Security Control[J]. Journal of Southwest Jiaotong University, 2015, 28(3): 478-484,503. doi: 10.3969/j.issn.0258-2724.2015.03.015
    [5]LIU Dawei, GUO Jin, WANG Xiaomin, CHEN Jianyi, YANG Yang. Intelligent Monitoring Technologies for Railway Signaling Systems in China[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 904-912. doi: 10.3969/j.issn.0258-2724.2014.05.025
    [6]YU Ning-Yu, MA Gong-Guang,  , SHI  , Rong. Blind Estimation of Symbol Rates of Multi-component Phase-Shift Keying Signals[J]. Journal of Southwest Jiaotong University, 2011, 24(6): 904-909. doi: 10.3969/j.issn.0258-2724.2011.06.003
    [7]CHE Chang, HU Dan. CoarseSignalProcessingforACPowerSmartSensor[J]. Journal of Southwest Jiaotong University, 2011, 24(4): 598-603. doi: 10.3969/j.issn.0258-2724.2011.04.012
    [8]ZHANG Yadong, GUO Jin, SHAN Na. Comprehensive Evaluation of Risk Severity Level of Railway Signal System[J]. Journal of Southwest Jiaotong University, 2010, 23(5): 759-763. doi: 10. 3969/ j. issn. 0258-2724.
    [9]REN Xinxin, LI Qiang, WU Zhenye. Computer Aided Decision-Making System for Staff Promotion Based on Fuzzy Neural Network[J]. Journal of Southwest Jiaotong University, 2006, 19(2): 245-249.
    [10]SHAO Jun, YIN Zhongke, WANG Jianying. Improved FFT-Based MP Algorithm for Signal Sparse Decomposition[J]. Journal of Southwest Jiaotong University, 2006, 19(4): 466-470.
    [11]ZHANG Ge-xiang, RONG Hai-na, JIN Wei-dong. Application of Support Vector Machine to Radar Emitter Signal Recognition[J]. Journal of Southwest Jiaotong University, 2006, 19(1): 25-30.
    [12]YIN Zhong-ke, WANG Jian-ying, SHAO Jun. Sparse Decomposition Based on StructuralProperties ofAtom Dictionary[J]. Journal of Southwest Jiaotong University, 2005, 18(2): 173-178.
    [13]HUAZe-xi, YIN Zhong-kel HUANGXiong-hua, . FastAtom Construction Algorithm for SignalDecomposition in Over-Complete Dictionary[J]. Journal of Southwest Jiaotong University, 2005, 18(3): 402-405.
    [14]LIN Fu-yong, WANG Tai-yong. New Method for Multi-resolution Analysis in Signal Processing[J]. Journal of Southwest Jiaotong University, 2003, 16(5): 574-577.
    [15]ZHANG Ji-ye, YANG Yi-ren, ZENG Jing. Global Stability of Delayed Hopfield Neural Network Models[J]. Journal of Southwest Jiaotong University, 2001, 14(5): 522-525.
    [16]DAIXiao-wen, WUXiao-xiong, YANJun-mao. The Signal Processing of the Control System of Tilting Trains[J]. Journal of Southwest Jiaotong University, 2000, 13(6): 647-650.
  • Cited by

    Periodical cited type(6)

    1. 卫恒丹. 机车信号降噪措施的研究与应用. 现代工业经济和信息化. 2025(02): 110-111+134 .
    2. 谭继勇,罗俊,谢江涛,秦玉玺,汪友明. 基于鲸鱼优化和批量规范化卷积神经网络的振动信号去噪. 机械与电子. 2024(04): 3-8 .
    3. 武晓春,刘欣然. 基于三稳态随机共振的ZPW-2000移频信号检测方法研究. 铁道科学与工程学报. 2024(08): 3394-3405 .
    4. 武晓春,刘欣然. 基于轻量化多尺度神经网络的ZPW-2000移频信号检测方法. 中国铁道科学. 2024(05): 187-197 .
    5. 杨世武,楚少童,刘淑贤,刘倡,熊奇慧. 基于改进DnCNN的机车信号抗干扰算法. 北京交通大学学报. 2022(02): 73-81 .
    6. 黄斌. 基于FFT算法的铁路机车信号故障检测研究. 电子技术与软件工程. 2022(12): 144-147 .

    Other cited types(8)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article views(635) PDF downloads(32) Cited by(14)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return